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Modeling mortality at old age with time-varying
parameters
Pavel Zimmermann

Department of Statistics and Probability, University of Economics, Prague, Czech Republic

ABSTRACT
Several models of old age mortality with time-varying para-
meters are expressed in a single formula. In these models, the
existence of an age threshold above which mortality increases
over time and below which mortality decreases over time is
problematic. The conditions of appearance of this threshold
are expressed and shown on logistic and exponential models
with empirical data. The conditions of appearance of the
threshold reflect actual situations in developed countries.
Richards’ curve avoids the appearance of the threshold with
empirical data.

KEYWORDS
logistic model; mortality
models; old age; Richards’
curve

1. Introduction

Table 1 shows how empirical mortality data become scarce at old ages, which
explains why mortality rates are usually extrapolated from those at younger ages.

Mortality rates decrease over time in developed countries. Changes over
time are modeled by introducing time or by assuming that some parameters
vary in time. Observations are still too scarce after 105 years of age to favor
one model over another. I shall show that most models with two time-
varying parameters can be expressed in a unique formula. For such models,
an age threshold exists above which mortality increases over time and below
which mortality decreases over time. I shall modify these models to avoid the
existence of this threshold. I propose to use Richards’ (1959) curve, which
extends the logistic curve, to avoid the appearance of such a threshold.

2. Model

Time t and age x are continuous. The force of mortality at age x and time t is
μðt; xÞ. The probability of dying between age x� 0:5 at time t � 0:5 and xþ
0:5 at time t þ 0:5 is denoted qðt; xÞ:

qðt; xÞ ¼ 1� �0:5�0:5 exp �μðt þ s; xþ sÞð Þds: (1)
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Dðt; xÞ is the total number of deaths at age older than x� 0:5 and younger
than xþ 0:5, occurring in the time interval ðt � 0:5; t þ 0:5Þ. pðt; xÞ is the
population of men exposed to risk of death at age older than x� 0:5 and
younger than xþ 0:5 in the time interval ðt � 0:5; t þ 0:5Þ, in person-years.
mðt; xÞ denotes the mortality rate defined as

mðt; xÞ ¼ Dðt; xÞ
pðt; xÞ : (2)

Wilmoth et al. (2007) estimate q and m in discrete time and age in the
protocol of the Human Mortality Database.

Most one-dimensional models of mortality at old ages with time varying
parameters are of the form:

zðt; xÞ ¼ gðηðt; xÞÞ; (3)

where zðt; xÞ is μðt; xÞ, qðt; xÞ, or mðt; xÞ, and g is a differentiable mono-
tonically increasing function,

ηðt; xÞ ¼ aðtÞ þ bðtÞhðxÞ; (4)

where aðtÞ and bðtÞ are time-varying parameters and h is either the identity
or the logarithm. Models covered by Eq. (3) are listed in Table 2. With the
addition of a quadratic term, Eq. (3) also includes the model introduced by
Coale and Kisker (1990):

Table 1. Population exposed to risk of death and total number of deaths for men above 100
years of age in years 2005 to 2009. Source: Adapted from The Human Mortality Database (n.d.).

France Denmark Czech Republic

Age Deaths Population Deaths Population Deaths Population

100 1792 3919 99 235 90 150
101 1144 2206 66 141 35 82
102 650 1185 40 80 28 46
103 350 630 25 40 16 24
104 181 328 10 17 9 11
105 93 174 4 10 4 4
106 54 85 4 4 2 1
107 27 39 3 2 0 0
108 13 17 1 1 0 0
109 6 6 0 1 0 0
110+ 2 1 1 1 0 0

Table 2. Models (originally applied for fixed time) covered by Eq. (3).
Specification z g Reference

logit ðμðt; xÞ Þ ¼ aðtÞ þ bðtÞx μðt; xÞ logistic Thatcher et al. (1998)
ln ðμðt; xÞ Þ ¼ aðtÞ þ bðtÞx μðt; xÞ exponential Gompertz (1825)
logit ðmðt; xÞ Þ ¼ aðtÞ þ bðtÞx mðt; xÞ logistic Buettner (2002)
logit ðqðt; xÞ Þ ¼ aðtÞ þ bðtÞx qðt; xÞ logistic Heligman and Pollard (1980)
logit ðμðt; xÞ � c Þ ¼ aðtÞ þ bðtÞx μðt; xÞ � c logistic Thatcher (1999)
ln ðmðt; xÞ Þ ¼ aðtÞ þ bðtÞ lnðxÞ mðt; xÞ exponential Boleslawski and Tabeau (2001)
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mðt; xÞ ¼ exp aðtÞ þ bðtÞxþ cðtÞx2� �
: (5)

If a and b are linear functions of time t, Eq. (3) becomes

g�1 zðt; xÞð Þ ¼ k1 þ k2hðxÞ þ k3t þ k4hðxÞt; (6)

where kj, j ¼ 1; 2; 3; 4 are parameters.

Theorem 1. In mortality models of Eq. (3) and (4), if the parameter bðtÞ
increases strictly in time t, there exists a x�ðtÞ > 0 such that zðt; xÞ increases
strictly in time for any x > x�ðtÞ.
Proof. The partial derivative of zðt; xÞ with respect to time is

@zðt; xÞ
@t

¼ @gðηðt; xÞÞ
@ηðt; xÞ

@ηðt; xÞ
@t

¼ @gðηðt; xÞÞ
@ηðt; xÞ a0ðtÞ þ b0ðtÞhðxÞð Þ; (7)

where a0ðtÞ and b0ðtÞ are the derivatives of a and b with respect to t. As g
monotonically increases with η, zðx; tÞ increases in time if
a0ðtÞ þ b0ðtÞhðxÞ > 0. If bðtÞ increases strictly in time, there exists some
x�ðtÞ > 0 for each fixed t, such that

hðxÞb0ðtÞ >� a0ðtÞ (8)

for x > x�ðtÞ, as hðxÞb0ðtÞ increases strictly with age and � a0ðtÞ is constant. □
For almost all ages with a sufficient total number of observations, mortal-

ity rates have been decreasing over time in most European countries.
Theorem 1 states that Eq. (3) describes increasing mortality over time at
old ages, which is contradicted by the data. Such a threshold can occur at the
age of 95 years and can cause counterintuitive predictions.

3. Logistic and exponential models

I use data for men from 1980 to 2011 in eight European countries, taken from
the HumanMortality Database (http://www.mortality.org). My programs in the
statistical software R are available at http://pages.vse.cz/zimmerp/publ/pred_
ha_scrpt.zip. Data are collected over discrete one-year time intervals with
midpoints ti and age intervals with midpoints xj. Similarly as in Brouhns
et al. (2002), I assume that the total number of deaths follows a Poisson
distribution:

Dðti; xjÞ,Poisson pðti; xjÞμðti; xjÞ
� �

: (9)

I compute the maximum likelihood to fit population size and total number of
deaths observed in each time ti. The likelihood in Eq. (9) is:
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L aðtiÞ; bðtiÞð Þ ¼
Y

j2V
expð�pðti; xjÞμðti; xjÞÞ

pðti; xjÞμðti; xjÞDðti;xjÞ
Dðti; xjÞ! ; (10)

where V ¼ j : xmin � xj � xmax
� �

. xmax ¼ 100:5 years is the oldest age I
considered. I tested three different values for the youngest age xmin: 65.5,
80.5, and 85.5 years. Maximizing L amounts to maximize its logarithm with
constant terms omitted:

lðaðtiÞ; bðtiÞÞ ¼
X

j2V
Dðti; xjÞ ln μðti; xjÞ

� �� pðti; xjÞμðti; xjÞ: (11)

Then I fit for the trends of estimated aðtiÞ and bðtiÞ. In case of a and b
linear with time t, derivatives in Eq. (8) are constant and x�ðtÞ is independent
of time. Table 3 presents the linear time trend of the parameter estimates for
Denmark for both logistic and exponential functions, with xmin ¼ 80:5 years.
All estimates are significant at 5%. The estimates of the growth parameters
for the logistic function are a0ðtÞ ¼ �0:0834 and b0ðtÞ ¼ 0:0009. For age
older than x� ¼ �a0ðtÞ=b0ðtÞ ¼ 96:5 years, the estimated force of mortality
increases in time (Figure 1 left). For the exponential curve, this age is also
x� ¼ 96:5 years (Figure 1 right). Table 4 presents thresholds x� for other
countries and minimum ages xmin.

The thresholds vary across countries as well as with minimum ages xmin.
For xmin ¼ 65:5 years, the threshold for all countries except Denmark is
higher than for xmin ¼ 80:5 or 85.5 years. Mortality projections for pension
funds or insurance companies often assume a maximum age of 110 to 120
years. For the Netherlands, Norway, Denmark, and the United Kingdom, for
all three xmin, and for Spain, Italy, and the Czech Republic for xmin ¼ 80:5
and 85.5, I estimated thresholds x� from 94 to 103 years of age. The projec-
tions then result in a force of mortality increasing for a substantial part of the
projected age range lying above the threshold, while for ages below the
threshold, mortality decreases. This property of the projections is an anom-
aly, which should be rectified.

Table 3. Estimated linear time trends of parameters aðtÞ and bðtÞ for Denmark for the period
1980 to 2011 and xmin ¼ 80:5 years.
Curve Parameter Trend parameter Estimate Standard error

Logistic aðtÞ intercept 155.14 12.81
slope −0.08 0.01

bðtÞ intercept −1.61 0.15
slope 0.00 0.00

Exponential aðtÞ intercept 134.07 10.28
slope −0.07 0.01

bðtÞ intercept −1.40 0.11
slope 0.00 0.00
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4. Erasing the threshold

To avoid the existence of an age over which the model drives the force of
mortality to increase over time, one possibility is to assume that mortality at
age older than x�ðtÞ is constant over time. Another possibility is to assume a
maximum age ωðtÞ for which qðωðtÞÞ ¼ 1. For example Denuit and
Goderniaux (2005) assume a quadratic trend with ωðtÞ ¼ 130 years for all
dates t. Even a ωðtÞ varying over time does not guarantee that mortality at all
ages decreases over time. As Table 4 shows, lowering xmin often increase
x�ðtÞ. For France and the Czech Republic, thresholds for xmin ¼ 65:5 are
located from 120 to 185 years, so the threshold is avoided for the ages
relevant for practical tasks.

Figure 1. Estimated force of mortality in Denmark for calendar years 1980 and 2011 with logistic
and exponential functions. The parameters aðtÞ and bðtÞ are smoothed linearly.

Table 4. Age threshold x� over which the estimated force of mortality increases over time for
selected countries and minimum ages considered for estimates.

x� in years

Country Curve xmin ¼ 65:5 xmin ¼ 80:5 xmin ¼ 85:5

the Netherlands logistic 95.6 94.2 94.2
exponential 94.7 94.1 94.5

Norway logistic 96.6 94.8 95.4
exponential 96.1 94.8 95.4

Denmark logistic 98.4 96.5 100.1
exponential 97.6 96.5 99.4

United Kingdom logistic 112.1 103.3 102.5
exponential 107.8 100.9 100.6

Spain logistic 117.2 103.5 100.0
exponential 112.4 101.2 99.0

Italy logistic 110.5 105.6 106.3
exponential 107.5 102.7 102.9

Czech Republic logistic 184.1 108.7 108.4
exponential 134.5 103.4 103.2

France logistic 132.5 109.2 108.3
exponential 121.0 105.1 104.2
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Changing the specification of μðt; xÞ can also be a solution. Richards
(1959) proposed:

μðt; xÞ ¼ ð1þ aðtÞ exp �bðtÞðx� cðtÞÞð ÞÞ�1
aðtÞ; (12)

where aðtÞ, bðtÞ, and cðtÞ are real time-dependent functions. This curve is not
symmetric around its inflection point. The inequality

@μðt; xÞ
@t

< 0 (13)

has no closed form solution. A time-varying lower bound ~xðtÞ, an age above
which the modeled force of mortality is bound to decrease over time, exists at
each time t. The conditions observed in Europe lead us to assume that:

aðtÞ > 0 and bðtÞ > 0 for all t > 0; (14)

a0ðtÞ < 0 and b0ðtÞ < 0 for all t > 0: (15)

Theorem 2. Under conditions (14) and (15), Richards’ curve with time-vary-
ing parameters of Eq. (12) decreases over time for all ages x > ~xðtÞ, where

~xðtÞ ¼ bðtÞ c
0ðtÞ
b0ðtÞ þ cðtÞ: (16)

The proof is in the Appendix. If bðtÞ and cðtÞ are linear in time t, ~xðtÞ is also
linear in time. For age under the lower bound ~xðtÞ, the predicted force of
mortality may not decrease over time. I now check numerically the absence

of solution of the inequality @μðt;xÞ
@t > 0 on the region bounded by xmin � x �

~xðtÞ and on the considered time interval.
I smoothed the observed mortality rates mðt; xÞ for each country listed in

Table 4 and fitted a Richards’ function of Eq. (12) using ordinary least
squares, assuming that in the centers of the age and time intervals,
μðt; xÞ,mðt; xÞ. I used the R two-step procedure locfit documented in
Loader and Liaw (2013). Local regression models are fitted at each point,
which is then replaced by its forecast. In order to capture dispersion with
ages, I used prior weights, each equal to the inverse of the variance of the
estimator of the binomial ratio:

wðt; xÞ ¼ pðt; xÞ
mðt; xÞ 1�mðt; xÞð Þ : (17)

Figure 2 shows the estimated Richards’ curve for men in France and Denmark
in the years 1980 and 2011, with xmin ¼ 80:5 years. For France, the lower bound
~xðtÞ is negative for any t � 4995 years. Theorem 2 stipulates that the undesirable
increase of mortality over time does not occur for any positive age and
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reasonable forecasting horizon, as μðx; tÞ is decreasing for any age x > ~xðtÞ. For
Denmark, the lower bound starts from ~xð1980Þ ¼ 107:9 years and decreases to
~xð2011Þ ¼ 104:1 years. μðt; xÞ decreases over time for any t 2 ½1980; 2011� and
any x 2 ½xmin; ~xðtÞ�, except very briefly around 1981 and around 100 years of
age. According to Theorem 2, the estimated mortality should not increase for
any age x > ~xðtÞ either. For the Czech Republic and for Italy, the force of
mortality never increases. For the Netherlands, Norway, Spain, and the United
Kingdom, however, Richards’ function fails to help the force of mortality from
increasing. Figure 3 shows the estimated Richards’ curves for Norwegian and
Spanish men. For the Netherlands and Norway, the increase of mortality already
appears at around 96 years of age. For Spain, mortality increases around 100
years of age. For the United Kingdom, the increase occurs around 110 years of
age. The results are the same with xmin ¼ 65:5 years and xmin ¼ 85:5 years.

5. Conclusion

The existence in several common mortality models of a threshold above
which forecast mortality rates increase over time is an anomaly.
Applications indicate the threshold often ranges between 95 and 110 years.
In pension insurance or other longevity risk products, this problem leads to
inconsistent results. For some countries, using Richards’ function avoids the
undue increase of mortality over time. For some other countries, however,
increasing mortality occurs even with Richards’ function. So Richards’ func-
tion solves the anomaly only partially.

Figure 2. Estimated force of mortality at old age for the years 1980 and 2011 for French and
Danish men, using Richards’ function of Eq. (12). Parameters aðtÞ, bðtÞ, and cðtÞ are smoothed by
linear interpolation. xmin ¼ 80:5 years.

178 P. ZIMMERMANN

D
ow

nl
oa

de
d 

by
 [

21
3.

15
1.

77
.2

46
] 

at
 0

2:
15

 0
4 

Se
pt

em
be

r 
20

17
 



Funding

The article is supported by the Grant Agency of the Czech Republic, grant nr. P404/12/0883.

References

Brouhns, N., Denuit, M., and Vermunt, J. K. (2002). A Poisson log-bilinear regression
approach to the construction of projected lifetables. Insurance: Mathematics and
Economics, 31(3): 373–393.

Coale, A. J. and Kisker, E. E. (1990). Defects in data on old-age mortality in the united states:
New procedures for calculating mortality schedules and life tables at the highest ages.
Asian and Pacific Population Forum, 4(1): 1–31.

Denuit, M. and Goderniaux, A.-C. (2005). Closing and projecting lifetables using log linear
models. Bulletin of the Swiss Association of Actuaries, 1(1): 29–49.

The Human Mortality Database. (n.d.). http://www.mortality.org/
Loader, C. and Liaw, M. A. (2013). Package ‘locfit’. The Comprehensive R Archive Network

https://cran.r-project. org/web/packages/locfit/locfit. pdf.
Richards, F. (1959). A flexible growth function for empirical use. Journal of experimental

Botany, 10(2): 290–301.
Wilmoth, J. R., Andreev, K., Jdanov, D., Glei, D. A., Boe, C., Bubenheim, M., Philipov, D.,

Shkolnikov, V., and Vachon, P. (2007). Methods protocol for the human mortality
database [version 31/05/2007].

Appendix

Proof of Theorem 2

The derivative of Eq. (12) with respect to time is

@μðt; xÞ
@t

¼ f1ðt; xÞ � f2ðt; xÞ
aðtÞ2 aðtÞ exp �bðtÞðx� cðtÞÞð Þ þ 1ð Þ 1þ1=aðtÞð Þ ; (18)

Figure 3. Estimated force of mortality at old age for the years 1980 and 2011 for Norwegian and
Spanish men, using Richards’ function of Eq. (12). Parameters aðtÞ, bðtÞ, and cðtÞ are smoothed
by linear interpolation. xmin ¼ 80:5 years.
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where

f1ðt; xÞ ¼ �aðtÞ2 �b0ðtÞ x� cðtÞð Þ þ bðtÞc0ðtÞð Þ exp �bðtÞ x� cðtÞð Þð Þ (19)

and

f2ðt; xÞ ¼ a0ðtÞðaðtÞ expð�bðtÞðx� cðtÞÞÞ�
� lnðexp �bðtÞðx� cðtÞÞð ÞaðtÞ þ 1Þðexp �bðtÞðx� cðtÞÞð ÞaðtÞ þ 1ÞÞ: (20)

As, under conditions of Eq. (14), aðtÞ > 0 for all t, the denominator of Eq. (18) is positive and
I limit the analysis to the conditions under which the nominator in Eq. (18) is negative. The
inequality f1ðt; xÞ � f2ðt; xÞ<0 however have no analytic solution for x.

The function f1 is not monotone with respect to age x. Under conditions of Eq. (14) and (15):

lim
x!1 f1ðt; xÞ < 0: (21)

For any t, f1ðt; xÞ has one root at

~xðtÞ ¼ bðtÞc0ðtÞ
b0ðtÞ þ cðtÞ: (22)

Hence,

f1ðt; xÞ<0 for x > ~xðtÞ: (23)

Moreover,

lim
x!1 f2ðt; xÞ ¼ 0: (24)

The derivative of f2ðt; xÞ is
@f2ðt; xÞ

@x
¼ aðtÞa0ðtÞbðtÞ ln exp �bðtÞðx� cðtÞÞ þ 1ð Þð Þ exp �bðtÞ x� cðtÞð Þð Þð Þ: (25)

Under the conditions of Eq. (14) and (15), the derivative is negative for all x and t. This
property together with the limit in Eq. (24) implies that

f2ðt; xÞ > 0 (26)

for any x and t. This together with Eq. (23) means that f ðt; xÞ < 0 for all x > ~xðtÞ and t.
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