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Abstract

ZIMMERMANN PAVEL, MAZOUCH PETR, HULÍKOVÁ TESÁRKOVÁ KLÁRA. 2014. Missing 
Categorical Data Imputation and Individual Observation Level Imputation.  Acta Universitatis 
Agriculturae et Silviculturae Mendelianae Brunensis, 62(6): 1527–1534.

Traditional missing data techniques of imputation schemes focus on prediction of the missing value 
based on other observed values. In the case of continuous missing data the imputation of missing 
values o� en focuses on regression models. In the case of categorical data, usual techniques are then 
focused on classifi cation techniques which sets the missing value to the ‘most likely’ category. This 
however leads to overrepresentation of the categories which are in general observed more o� en 
and hence can lead to biased results in many tasks especially in the case of presence of dominant 
categories. We present original methodology of imputation of missing values which results 
in the most likely structure (distribution) of the missing data conditional on the observed values. 
The methodology is based on the assumption that the categorical variable containing the missing 
values has multinomial distribution. Values of the parameters of this distribution are than estimated 
using the multinomial logistic regression. Illustrative example of missing value and its reconstruction 
of the highest education level of persons in some population is described.
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1 INTRODUCTION
Popular methods for a completion of (individual) 

observation as for example mean imputation, 
regression imputation or maximal likelihood 
imputation are usually focused on imputation 
of a continuous variable. Those methods mostly 
classify the missing values as “most likely” 
or “expected” values. Overview of those methods can 
be found for example in Schafer, Graham, 2002. List 
of methods for imputation of categorical variable 
is less extensive. In the case of categorical data, 
usual techniques are then focused on classifi cation 
techniques which sets the missing value to the ‘most 
likely’ category (see Sentas et al., 2004). This however 
leads to overrepresentation of the categories which 
are in general observed more o� en and hence 
can lead to biased results in many tasks especially 
in the case of presence of dominant categories. 

The aim of the paper is to introduce multinomial 
logistic regression as very eff ective tool for missing 
data imputation. Motives for using this technique 
could be described by the following three 
requirements:
• to impute data set in form which can be re-used 

for variety of diff erent analysis and applications; 
this means single imputation is required,

• to impute data in the most detailed level; optimally 
on individual observation level,

• to impute data in a way that will respect “expected” 
ratios of categories in general.
In the following text the methodology and its 

specifi c features will be described. 

2 MISSING DATA TYPOLOGY
In this article the widely renowned typology 

of missing data structures developed in Rubin, 1976 
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will be adopted. Rubin considered the missingness 
as a probabilistic phenomenon, i.e. a set of random 
indicator variables R indicating non-missingness 
of a particular observation was considered. Also 
the partition of the complete dataset Ycom into set 
of observed values Yobs and set of missing values Ymis, 
i.e.

Ycom = (Yobs, Ymis),

was considerd. Missing data are called missing 
at random (MAR) in the case where the distribution 
of the missingness does not depend on Ymis, i.e. when

P(R|Ymis) = P(R|Yobs).

This is the case where ‘MAR allows the 
probabilities of missingness to depend on observed 
data but not on missing data’. A special case of 
the MAR is then MCAR (missing completely at 
random), where the probabilities of missingness 
do not depend on the observed data either:

P(R|Ycom) = P(R).

If MAR is violated, data are missing not at random 
(MNAR).

The Task Solved Within the Paper
In this article a methodology for a specifi c task is 

developed which can be however reused in many 
similar tasks. 

We assume a univariate pattern of categorical 
data, i.e. data where several variables are completely 
observed (Xobs) and one variable contains missing 
values. This was schematically expressed as 
in Schafer, Graham, 2002.

More precisely, we assume nt complete 
observations of p categorical variables observed over 
T time periods denoted as Xi,t,j, i = 1, …, nt, t = 1, …, T, 
j = 1, …, p. Observations of Xi,t,j are complete for all 
years. Furthermore we observe another categorical 
variable Yi,t, i = 1, …, nt, t = 1, …, T. For the years 
t = 1, …, c < T observations of Yi,t are complete 
(or with just negligible amount of missing data). 
These years will be referred as ‘complete data years’. 
For the outstanding years t = c + 1, …, T the amount 
of missing data for Yi,t is rather large and MAR is not 
guaranteed. These years will be referred as ‘missing 
data years’. 

We assume that c is ‘suffi  ciently large’ to 
reasonably extrapolate trends for the missing data 
years and we assume that the trends observed 
during the complete data years are relevant 
for the predictions for the missing data years. 
Observations of Yi,t are assumed conditionally 
independent conditioning on Xi,t,j.

The Time Structure of Data Set According 
to Missing Data 

From the time point of view three types of missing 
data position could be distinguished. The fi rst is 
situation where we have complete information 
from some moment (year) but before this time 
missing data occur. In such a situation the aim is 
to reconstruct data before some point in time.

The second example is situation where data are 
complete, however, from some moment in time 
some (or all) data are missing. The aim in such 
a situation is to estimate the missing information 
for that period a� er any concrete moment. The third 
type is a situation where we have missing data 
“in the middle” of the time period, i.e. for some 
(limited) period of time the information is partially 
or completely missing. The aim is to bridge this part, 
estimate the missing data respecting trends before 
and a� er this missing period.

3 THE IMPUTATION ALGORITHM
In the following text, we will mean by 

determinants the original or rediscretized variables 
that have a signifi cant impact on the distribution 
of the variable containing missing data. (The 
signifi cance is measured over the years with 
complete data.) By profi le we then mean a group 
of data with the same combination of values of 
the determinants. The set of determinants will be 
denoted as X. The matrix containing observations of 
determinants up to the time t will be denoted as Xt. 

The basic steps of our imputation algorithm:
1. Based on the data observed in complete data 

years Xi,t,j, i = 1, …, nt, t = 1, …, c, j = 1, …, p and  
Yi, i = 1,…, nt, t = 1, …, c, fi nd determinants X 
of the missing data structure. 

2. Defi ne profi les of observations with missing data 
based on the values of the observed determinants 
Xt. The conditional distribution of Y is diff erent 
conditioning on diff erent profi les.

3. Estimate probabilities of each category q, 
q = 1, …, k of the missing variable Y for each 
profi le, i.e. estimate P(Y = q|X).

4. Based on the probabilities, fi nd “appropriate” 
count of missing observations of each category 
in each profi le and distribute these counts 
to each individual in the profi le.

Multinomial Logistic Regression Application
Based on the assumption of conditional 

independence (independence of the observations 
the within profi le) the categorical variable 

1: Data set structure
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containing the missing values (Y) follows for a given 
profi le the multinomial distribution. This fact 
immediately suggests using the multinomial logistic 
regression on the complete data years (t ≤ c) as 
the methodology for fi nding the determinants (X) 
of the distribution (structure) of Y (as the response 
variable) and predicting the conditionally expected 
probabilities of each category of the response 
variable for each profi le of data at each time point 
(for both t ≤ c and t > c). This requires assessing 
the time variable as covariate and assuming some 
(possibly polynomial) trend. That is the probability 
distribution of the categories of Y for each profi le 
in each year P(Yt = q|X, t) is fi tted as the outcome 
of the regression analysis (steps 1–3 of the above 
outlined imputation algorithm).

3.2 Multinomial Logistic Model
The multinomial regression method is a 

generalization of the logistic regression to multiclass 
problems. It is assumed that the response 
variable is a categorical variable with k possible 
outcomes. One of the k categories are selected as 
the ‘reference’ category. For every other category q, 
a regression equation is assumed in the model 
to describe the logarithmic odds of the category q 
to the reference category, i.e. equations
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3.3 Partially Missing Data
Based on the above described analysis we obtain 

the predicted distribution of the variable containing 
the missing data (Y) also for the years containing 
missing data (t > c) for each profi le and each time 
point (conditioning on X and t will be leaved 
out in the notation of this section for simplicity). 
However, for these years we may have some amount 
of observed data (supposing partially missing 
data in the data set). Therefore we can estimate 
two distributions of missing values, fi rst based 

on complete data years and second based on missing 
data years:
1. First prediction of the distribution P(Y = q) 

for each category q = 1, …, k and a given profi le 
and each time point as the prediction based 
on the complete data years, i.e. Xt, Yt t < c.

2. Second distribution P(Y = q|R = 0) fi tted based 
on the observed data in the missing data years 
Xt, Yt, t > c, i.e. distribution conditional on the fact 
that an observation is not missing.

Besides these distributions, we can also estimate 
the probability of missing values (P(R = 0)). The 
(marginal) distribution P(Y = q) equals

P(Y = q) = P(Y = q, R = 0) + P(Y = q, R = 1),

where P(Y = q, R = 0) (or P(Y = q, R = 1)) is the (joint) 
probability that the observation is certain category 
and is missing (or is not missing respectively) which 
equals 

P(Y = q, R = 0) = P(Y = q|R = 0) P(R = 0) 

and

P(Y = q, R = 1) = P(Y = q|R = 1) P(R=1).

We can write for the distribution of the 
observations that are missing (i.e. for which we 
already know that R = 0) as:

P(Y = q|R = 0) = 

= [P(Y = q) − P(Y = q|R = 1) P(R = 1)]/ P(R = 0).

Furthermore the estimates of the diff erences 
between the distributions P(Y = i) and P(Y = i|R = 1) 
may suggest the (non)randomness in missingness 
‘mechanism’. 

3.4 Finding the Appropriate Count of Missing 
Observations of Each Category

Let us assume one particular profi le of the data 
in a given year. Based on the above described 
regression analysis we can get the estimated 
distribution of the categories of Y for the missing 
observations, denoted as P(Y = q|R = 0) = pq, q = 1, …, k 
for this given profi le and year. Furthermore we know 
that in this profi le and year, there is certain amount 
of missing data n. The distribution of the missing 
observations is (under the assumption of 
conditional independence) multinomial with the 
given parameter vector p = (p1, p2, …, pk) and n. 
Given the probability distribution of the categories 
of the response variable and the number of missing 
observations we still need to determine how many 
of the missing observations correspond with each 
category (step 4 of the above outlined imputation 
algorithm). This variable will be denoted as Uq, 
q = 1, …, k. Note that it is required that the missing 
values are imputed on the individual level 
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and hence we need to determine counts (integers) 
of missing observations for each category. 

Normally the expected value would be the fi rst 
choice for the predictions as it yields predictions 
with the lowest least square error. The expected 
value of the multinomial distribution in a particular 
category q is simply the count of missing observations 
(in the particular profi le in the particular year) times 
its probability, i.e.

E(Uq) = n pq, q = 1, …, k.

However, the expected values are generally real 
numbers (not necessarily integers) and hence do not 
allow for imputation on individual observation 
level. Therefore we suggest using the maximum 
likelihood criterion where the maximization is 
performed only on the discrete (integer) numbers. 
This means fi nding such uq, q = 1, …, k that the joint 
distribution P(u1,u2,…,uk |p, n) is maximized, i.e. we 
are looking for a vector u = (u1, u2, …, uk) for which

arg maxP(u; p, n)
 u

where P denotes the probability function 
of the multinomial distribution. This in fact means 
we are looking for the mode of the multinomial 
distribution.

Mode of the Multinomial Distribution
There is no closed form formula for the mode 

of the multinomial distribution. There are however 
several iterative algorithms developed for this task. 
See for example Lloyd et al., 1997, Finucan, 1964 
or Le Gall, 2003. In our computations we selected 
the Finucan’s algorithm published in Finucan, 
1964. 

Distribution of Estimated Data 
on the Individual Level

Having found the mode of the multinomial 
distribution for a particular profi le we have a vector 
of counts (integers) of missing values of each 
category of the variable of the concern which has 
the highest probability. Within the profi le, these 
counts may be ‘assigned’ randomly to the individuals 
as all individuals of the given profi le have the same 
probability vector pi, i = 1, …, k of being in i-th 
category.

4 APPLICABILITY OF THE ALGORITHM
The proposed method of estimation of missing 

data could be used in many spheres of application. 
In this paper we demonstrated the algorithm 
on (completely or partially unknown) education 
structure of a population. Education attainment 
could be taken as a typical example of categorical 
data. Moreover, when studying the population, this 
type of data is relatively o� en incomplete. Other 
example could be e.g. the marital status, age profi le, 
etc.

The described algorithm is based on the 
assumption of continuous trend in the data 
within the missing data years. It corresponds with 
situation where data are missing because of some 
administrative changes etc. which does not aff ect 
the trend in the data. Application of the described 
method in situations where this condition is not 
fulfi lled (e.g. where the missingness of the data is 
at least partially related to some changes aff ecting 
also the long-term trend – wars, etc.) would 
mean some sort of extrapolation of “unaff ected” 
development – how the structure (partially 
or completely missing) would have developed if 
there had not been any interruption of the trend.

5 PRACTICAL APPLICATION

5.1 Dataset
The following variables are available within our 

dataset: Education, Sex, Marital status, Diagnoses 
of death, Age and Year of death. The dataset contains 
individual deaths in the Czech Republic 1995–2011. 
As a practical application we assumed educational 
attainment of a studied population as the variable 
containing missing data (Y).

The education is perceived as an important 
proxy for social status and behavioural habits 
and therefore it is a factor driving mortality. 
The education was collected obligatory until 2009 
only and almost 40% of cases are missing in the year 
2010 and 2011 and the other 60% are unreliable. Due 
to this fact it is necessary to impute the education 
conditioning on the other observed variables 
(i.e. using the information contained in the other 
variables X) and some regression model is necessary 
to forecast the probability of a death being in a given 
educational category given the other observed 
values in the year 2010 and 2011. 

5.2 The Multinomial Model

Fitted Model
If the imputation algorithm described above is 

applied, it is fi rst necessary to fi t the conditional 
probabilities of each educational level using 
the multinomial logistic regression. The second 
educational category (low education) was selected 
as the reference category. Results are interpreted 
in relation to the reference category and log odds 
of the given category to the reference category 
are modeled. In the case of 4 education levels 3 
equations are estimated: Basic vs Low, Middle vs 
Low, High vs Low. The determinants identifi ed are 
displayed in the following table.Besides the main 
eff ects, interaction of the age and sex, marital status 
and sex were used and also some other interactions 
were identifi ed and consequently reduced into 
indicators of sex and cancer, and sex and year 
of death < 2003. Based on the likelihood ratio 
test, all these eff ects were statistically signifi cant 
(p-value < 0.0001). The profi les then consists 
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of combinations of the levels of the above listed 
determinants. 

Further Interesting Relations Observed
We present some of the results observed that 

are in particular interesting. In order to be able 
to extrapolate the trend into unobserved years 
2010 and 2011, we need to use a parametric 
function for the eff ect of the year of death. In this 
case second order polynomial was particularly 
suitable especially with an extra eff ect of the male 
gender until 2002. The trend curves are displayed 
in the Fig. 2.

Main eff ect of the male gender reduces the log 
odds ratio of having basic education (relatively 

to having low education) and increases the log odds 
ratio of having middle or high education. Results are 
in Fig. 3a.

Main eff ect of being single increases relatively 
the chances of having basic, middle or high 
education. Main eff ect of being a widower increases 
the chances of having basic education and decreases 
the chances of having middle or high education 
(Fig. 3b).

The interaction of the male gender with the single 
status was in particular signifi cant. We can interpret 
the result that single status increases the log odds 
ratio of having basic education, especially for males. 
Single status increases the log odds ratio (to low 
education) of females of having middle or high 

I: 

Variable Nr. levels Levels

Sex 2 Male/Female

Marital status 4 Single/Divorced/Widower/Married

Age 4 0–16/16–39/40–59/80–110

Cause of death 3 Cancer/Circulatory/Other

4

3

2

1

0

1

2

lo
g
od

ds
ra
tio

Low

Middle

High

Low males

Middle males

High males

2: Trend curves of the effect of the year of death
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3: 
Note: Main eff ect of gender (3a), marital status (3b) and cause of death (3c) reducing/increasing of the log odds raios 
of having level education: 1 – Low education, 3 – Middle education, 4 – High education.
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education and the interaction mitigates the single 
eff ect for males. Interactions are described in 
appendix (App. 1).

Neoplasms diagnose generally decreases the odds 
of having basic education and it strongly increases 
the odds of having middle or high education 
(Fig. 3c).

Circulation diseases strongly increase the odds 
of having basic education and decrease the odds 
of having high education. Diff erence between 
genders was not observed. 

There are signifi cant diff erences between 
the impact of the cancer on education for diff erent 
genders (interaction gender and cause): The impact 
of cancer on the decrease of the odds of having 
basic education and the increase of the odds 
of having middle or high education is much stronger 
for females than for males. So the neoplasm cause 
of death is determining the education much more 
for females than for males (see App. 2). 

5.3. Predicted Probabilities and Imputation
Based on this model, it is possible to determine 

the conditional probability distribution of the 
educational levels for each combination of 
the values of the regressors (for each profi le). 

These probabilities together with the number 
of missing observations for each profi le specify 
the multinomial distribution. The mode is searched 
for each profi le using the Finucan’s algorithm. 
These modes are then the number of imputed 
observations for each educational level in each 
profi le. The resulting imputation is for each 
education level displayed in comparison with 
the observed sample in Fig. 4.

6 CONCLUSION
Aim of this paper was to introduce multinomial 

logistic regression as very eff ective tool to missing 
data imputation. To the authors’ knowledge 
the combination of the multinomial regression 
and mode searching algorithm was used for the fi rst 
time for the missing data imputation task. 
The outcome of the proposed algorithm follows 
expected structure of the variable containing 
the missing values.

As a by-product the outcomes of the intermediate 
steps of the algorithm may be used for further 
analyses such as analyses of the dependencies 
(determinants) of the variable of our concern, 
or analysis of the missingnes mechanism.
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4: Distribution of deaths by education level, points are empirical values, lines are modeled values with prediction 2010 and 2011
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Future steps in the research will be to proof 
this method in some other practical situation. 
Demographic data (with incomplete information 
about the education attainment occurring 
in the latest years of the involved time period – as 
in the Fig. 3b) were used for the very fi rst verifi cation 
of the model and fi rst results seem to be acceptable. 

Next part of the research will be to fi nd more 
datasets with missing data, both MAR and MNAR 
and with diff erent structure of missing data 
from the time point of view (length of missing, time 
of missing) and to prepare more detailed analysis 
of complemented data fi les.

SUMMARY
Paper presents original methodology of imputation of missing values which results in the most likely 
structure (distribution) of the missing data conditional on the observed values. The aim of the paper 
is to introduce multinomial logistic regression as very eff ective tool for missing data imputation. 
Motives for using this technique could be described by the following three requirements:
1. to impute data set in form which can be re-used for variety of diff erent analysis and applications; 

this means single imputation is required,
2. to impute data in the most detailed level; optimally on individual observation level,
3. to impute data in a way that will respect “expected” ratios of categories in general.
To the authors’ knowledge the combination of the multinomial regression and mode searching 
algorithm was used for the fi rst time for the missing data imputation task. The outcome of the proposed 
algorithm follows expected structure of the variable containing the missing values.
The methodology is based on the assumption that the categorical variable containing the missing 
values has multinomial distribution. Values of the parameters of this distribution are than estimated 
using the multinomial logistic regression. The multinomial regression method is a generalization of 
the logistic regression to multiclass problems.
As a by-product the outcomes of the intermediate steps of the algorithm may be used for further 
analyses such as analyses of the dependencies (determinants) of the variable of our concern, or analysis 
of the missingnes mechanism.
Demographic data (with incomplete information about the education attainment occurring 
in the latest years of the involved time period) were used for the very fi rst verifi cation of the model 
and fi rst results seem to be acceptable.
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Appendix 1: The interaction of the male gender with the single status
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