
Abstract Intraguild predation has become a major

research topic in biological control. Quantification of

multipredator interactions and an understanding of the

consequences on target prey populations are needed,

which only highlights the importance of population

dynamics models in this field. However, intraguild

predation models are usually based on Lotka–Volterra

equations, which have been shown not to be adequate

for modeling population dynamics of aphidophagous

insects and their prey. Here we use a simple model

developed for simulation of population dynamics of

aphidophagous insects, which is based on the type of

egg distribution made by predatory females, to esti-

mate the real strength of intraguild predation in the

aphidophagous insects. The model consists of two

components: random egg distribution among aphid

colonies, and between-season population dynamics of

the predatory species. The model is used to estimate

the proportion of predatory individuals that face a

conflict with a heterospecific competitor at least once

during their life. Based on this, predictions are made

on the population dynamics of both predatory species.

The predictions are confronted with our data on in-

traguild predation in ladybirds.
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Introduction

Intraguild predation has become a major research to-

pic in biological control and conservation ecology. It

occurs when two predator species compete for the

same prey and one of them also feeds upon its com-

petitor (Polis et al. 1989). It is assumed to be a wide-

spread interaction within many, but not all,

communities of biological-control agents (Rosenheim

et al. 1995; Holt and Polis 1997). As a consequence,

intraguild predation combines two important structur-

ing forces in ecological communities, competition and

predation (Polis and Holt 1992; Polis and Winemiller

1996), and may generate a diversity of indirect effects

among cooccurring species (Miller and Brodeur 2002).

However, intraguild predation models are usually

based on Lotka–Volterra equations, which have been

shown not to be adequate for modeling population

dynamics of aphidophagous insects and their prey

(Kindlmann and Dixon 1993, 1999a, b, 2001).

Theoretical treatments have suggested that intra-

guild predation has a uniformly negative effect on the

ability of predatory biological control agents to sup-

press populations of herbivores in agroecosystems

(Rosenheim and Harmon 2005). This result follows

from key assumptions in the models, namely, that (1)

the system is at equilibrium, and (2) the two predators

compete for only a single species of shared prey

(Fig. 1). With these assumptions, an intraguild preda-

tor that was more effective at suppressing the target

herbivore population would drive an intraguild prey
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population extinct through a combination of competi-

tion and predation (Rosenheim and Harmon 2005). In

other words, the intraguild prey must be superior in the

competition for the shared prey in order to make

coexistence possible (Revilla 2002). This leads to a

prediction that intraguild predation is uniformly dis-

ruptive to biological control (Polis et al. 1989; Rosen-

heim et al. 1995; Holt and Polis 1997), which was

sometimes supported by empirical data (Finke and

Denno 2003).

A review of experimental field studies of intraguild

predation by Rosenheim and Harmon (2005), however,

revealed that inclusion of an intraguild predator can

have a range of possible effects, including opportuni-

ties for enhancing herbivore suppression. In the con-

text of this paper, experiments on aphidophagous

guilds by Snyder et al. (2004), showing that the top

predator, Harmonia axyridis (Pallas), can complement

aphid biocontrol by the parasitoid Aphelinus asychis

(Walker) rather than disrupting control through in-

traguild predation are especially important. This all

supports the view that intraguild predators can, in

many cases, enhance suppression of a target herbivore

population, which contradicts the theoretical predic-

tions. How can this discrepancy between theoretical

predictions and empirical evidence be explained? We

hypothesize that the explanation may be hidden in

another key assumption, which is implicit in the way

that models are constructed, and additional to the

‘‘equilibrium’’ and ‘‘single-prey’’ conditions (1) and (2)

mentioned above: (3) direct intraguild interactions are

sufficiently frequent to be important for dynamics. If

this condition is violated, then the predictions of the

theoretical models may not be valid. Here we aim to

pursue this hypothesis.

In the context of the hypothesis above, it is notable

that the lots of empirical data on interactions between

possible intraguild predator and intraguild prey, even

within the aphidophagous predators guild, were ob-

tained under artificial conditions—either in micro-

cosms, cages, or in the laboratory—where population

densities of both predator and prey tend to be larger

than in field conditions (e.g., Pell et al. 1997; Losey and

Denno 1998; Lucas et al. 1998; Hindayana et al. 2001;

Burgio et al. 2002; Agarwala et al. 2003; De Clercq

et al. 2003; Roy et al. 2003; Sato and Dixon 2003; Sato

et al. 2003, 2005; Snyder et al. 2004). While there is

strong evidence that intraguild interactions are wide-

spread in aphid-parasitoid or aphid-parasitoid-preda-

tor communities and mostly detrimental to aphid

parasitoids (Brodeur and Rosenheim 2000; Colfer and

Rosenheim 2001), nothing is known about how often

these interactions really occur in nature among aphid

predators. Therefore, we develop here a simple theo-

retical model predicting the strength of interspecific

interactions among predator guilds in the aphidopha-

gous systems and further support our claims by

empirical data collected in undisturbed field condi-

tions.

Materials and methods

The model

We assumed that n aphid colonies are attacked at

random by pA (pB) individuals of predatory species A

(B) and that the attacks are independent of each other

both intra- and interspecifically. Biologically, this

means that pA (pB) eggs (or egg batches) are laid

independently in the total of n aphid colonies. We

generated pA (pB) random integers, p1; p2; :::; ppA
and

p1; p2; :::; ppB
; from the uniform distribution in the

interval < 0; n > . We then numbered aphid colonies

from 1 to n and assumed that colonies with numbers

p1; p2; :::; ppA
were attacked by predator A and those

with numbers p1; p2; :::; ppB
by predator B. We then

calculated the numbers of cases predicted by this

model, when species A (B) occur alone in the aphid

colony and when these species occur together in one

colony. Based on these results, we calculated the ex-

pected population dynamics of these two species under

the assumptions that the between-year growth rate of

species A is 1.2 (i.e., an average individual in year t

Predator A Predator B

Prey

IG Predator

IG Prey

Prey

Fig. 1 Two possibilities of
interactions between two
predators and shared prey
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gives rise to 1.2 individuals in year t + 1) and that of

species B is 1, and that species B always wins in contest

with A, i.e., if both A and B occur in one patch

simultaneously, A does not survive in this patch while

B realizes its growth rate 1. The growth rates 1.2 and 1

were chosen arbitrarily, just to illustrate the general

trend; qualitatively, the same results would be obtained

by other pairs of growth rates. Biologically, this model

means that species A is able to grow more quickly but

is a worse competitor than species B.

The species studied

Our model aphid species was Macrosiphoniella tanace-

taria Kaltenbach. It is a cyclical, parthenogenetic spe-

cies, which means that in its annual life cycle, several

parthenogenetic generations are followed by a single

sexual generation. Most individuals are wingless (apte-

rae) during spring and summer, but some winged asex-

ual females (alates) can be observed from time to time,

and tend to colonize new plants. Sexual forms—alate

males and apterous females—appear in autumn. These

females lay diapausing eggs that hatch in spring, giving

birth to a new asexual lineage. M. tanacetaria was chosen

for various reasons such as: they are not attended by

ants, which limits the amount of interactions that have to

be considered; they tend to form colonies and are rela-

tively large, which facilitates their counting; they are

specialized herbivores, which prevents their dispersal on

other plants from the very start of the experiment and

means they stay in original patches during the whole

experiment. This oligophagous species feeds mainly on

tansy, Tanacetum vulgare L., a perennial composite, and

some of its relatives. It has the advantage of being a

robust plant easy to manipulate.

Experimental design

One hundred young tansy shoots of about 10 cm height

were collected in the field in the middle of April and

grown in pots at 18�C, with 14 h of light and 10 h of

dark for 1 month to regenerate. After that, the plants

were replanted into bigger pots (3 litres) and trans-

ferred outside. A mixture of half compost and half sand

was used. The pots were almost completely dug into

the earth so that the ground-dwelling predators were

able to access or leave the tansy plants. To keep the

patches of aphids separated, the pots were placed at

about 90 cm from each other. During the experiment,

we watered the plants if needed and trimmed new

shoots and dead leaves to keep the patch simple to

check. The adults and fourth instar larvae of M. ta-

nacetaria were collected in the field at the beginning of

June and raised in a greenhouse until a sufficient

number of adult aphids and larvae of the fourth instar

was obtained. Then, on 12 June, the 100 tansy plants

were infested by groups of 5, 10, or 20 aphids, depos-

ited at random. Afterward, the plants were monitored

once a day until the disappearance of aphids on 1

August. The numbers, species, and stages of the pre-

dators encountered on the plants were recorded.

Data analysis

We determined the empirical frequencies of the cases

when only one or more predators were found on the

plant out of the total of 3,000 observations (100 plants

times 30 days of observations). The expected fre-

quencies of these cases were calculated as follows: the

probability, pi, of presence of predator i on one plant

at one day, was derived from the total number of

plants with predator i present, Ti, recorded during

the experimental time: pi = ti/nÆd where n = 100 is the

number of experimental plants and d = 30 is the

number of days on which the records of predators were

performed. If p and q are these probabilities for a

couple of predatory species A and B, and if the null

hypothesis H0 ‘‘The presence of predator A is inde-

pendent of presence/absence of predator B’’ is as-

sumed, then the expected number of plants with both

A and B present is f̂11 ¼ p � q � n � d ¼ p � q � 3;000: We

compared the observed and predicted frequencies of

cases when two species of predators occurred together.

Results

Figure 2 shows model predictions for two scenarios: 100

aphid colonies and 20 (30) ladybirds of each species

distributed at random among them. In realistic cases

(when the number of predators is much lower than that

of aphid colonies), the number of cases when both

predator species are present is much lower than the

number of cases when only one of the predatory species

is present. This also accounts for the difference between

predators and parasitoids in this respect: the proportion

of colonies attacked by parasitoids tends to be much

larger than that attacked by predators, and therefore,

the low frequency of common occurrence of two spe-

cies, depicted in Fig. 2, does not hold in the case of

parasitoids (in their case, A + B would be large).

Figure 3 shows the predicted population dynamics

of species A and B depicted in Fig. 2, if the between-

year growth rate of species A is 1.2, that of species B is

1, and if B always wins, when it occurs together with A.

From Figs. 2 and 3 it is clear that when the common
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occurrence of both A and B in one patch is rare (as in

Fig. 2), the decisive factor is growth rate, rather than

competitive ability.

A comparison of empirical and predicted frequen-

cies of predators occurring individually and together is

shown in Fig. 4. The same pattern as in Fig. 2 appears

here: two different predatory species only very rarely

occur together. In addition, the observed numbers of

cases when two predatory species occur together is in

most cases even lower than expected just by random

distribution of both species, as in our simplistic model.

Discussion

Our very simplistic model does not take into account

the existence of the oviposition-deterring pheromone,

which enables the predators to avoid (or at least lower

the degree of) cannibalism or intraguild predation

(Dixon 2000). Inclusion of this assumption (as, e.g., in

Houdková and Kindlmann, this issue) would, however,

lead to the frequency of A + B being even lower and

the relative fitness of species A compared with that of

species B (as in Fig. 3) being even larger. Thus, both

theory and empirical data support the hypothesis that

direct interspecific conflicts between aphidophagous

predators seem to be rather infrequent in field condi-

tions even if we are aware that the generality of this

conclusion should be verified on a much larger scale

than we did here. However, if it is generally proven

that direct interactions between different predatory

species are rare in natural conditions, then the studies

of direct interactions between different predatory

species, although interesting academically, would not

be applicable for explanation of the population

dynamics of the predatory guilds.

It should also be noted that in the system considered

only condition (2) mentioned in the introduction is

satisfied. The two predators compete for a single spe-

cies of shared prey [i.e., (2) is satisfied], but the system

is not at equilibrium [i.e., (1) is not satisfied]. However,

when direct contacts between predators are very

infrequent [i.e., (3) is not satisfied], as in our system,

this becomes unimportant.

The observed numbers of cases when two predatory

species occurred together in our experiment was, in

100 aphid colonies, 20 ladybirds
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most cases, lower than expected just by random dis-

tribution of both species. This may be because the

predatory mothers, when smelling the oviposition-

deterring pheromone, were reluctant to oviposit in

aphid colonies already attacked by another predator.

The low rates of cooccurrence in the field are similar to

those predicted by our theoretical model, which only

strengthens our point that competitive ability (e.g.,

intraguild predation) is unlikely to be important in field

settings.

In our predictions in Fig. 4, we assumed that all

predatory species are equally likely to arrive at any

time. This may not be true. Predators have different

phenologies, and therefore, some species may tend to

arrive earlier and some later. If this is the case, then the

expected rate of encounters among different predatory

species is even lower than predicted in Fig. 4, which

makes our predictions even closer to the observed

values and further supports our claim that intraguild

predation may be a rare event.

Two suggestions for future research appear from

this study: (1) more extensive field monitoring should

be performed to correctly assess the true extent of

direct interactions between different predatory species;

and (2) predictions of population dynamics conse-

quences stemming from laboratory, cage, or micro-

cosm experiments about relative competitive abilities

of different predatory species in direct contests should

be taken with caution.
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