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Jana Jersáková1,2, Steven D. Johnson1 and Pavel Kindlmann2

1 School of Biological and Conservation Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa
2 Department of Theoretical Ecology, Institute of Systems Biology and Ecology AS CR and University of South Bohemia, Branišovská 31,
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ABSTRACT

The orchid family is renowned for its enormous diversity of pollination mechanisms and unusually high
occurrence of non-rewarding flowers compared to other plant families. The mechanisms of deception in
orchids include generalized food deception, food-deceptive floral mimicry, brood-site imitation, shelter imitation,
pseudoantagonism, rendezvous attraction and sexual deception. Generalized food deception is the most common
mechanism (reported in 38 genera) followed by sexual deception (18 genera). Floral deception in orchids has
been intensively studied since Darwin, but the evolution of non-rewarding flowers still presents a major puzzle
for evolutionary biology. The two principal hypotheses as to how deception could increase fitness in plants are
(i) reallocation of resources associated with reward production to flowering and seed production, and (ii) higher
levels of cross-pollination due to pollinators visiting fewer flowers on non-rewarding plants, resulting in more
outcrossed progeny and more efficient pollen export. Biologists have also tried to explain why deception
is overrepresented in the orchid family. These explanations include : (i) efficient removal and deposition of
pollinaria from orchid flowers in a single pollinator visit, thus obviating the need for rewards to entice multiple
visits from pollinators ; (ii) efficient transport of orchid pollen, thus requiring less reward-induced pollinator
constancy; (iii) low-density populations in many orchids, thus limiting the learning of associations of floral
phenotypes and rewards by pollinators ; (iv) packaging of pollen in pollinaria with limited carry-over from flower
to flower, thus increasing the risks of geitonogamous self-pollination when pollinators visit many flowers
on rewarding plants. All of these general and orchid-specific hypotheses are difficult to reconcile with the well-
established pattern for rewardlessness to result in low pollinator visitation rates and consequently low levels
of fruit production. Arguments that deception evolves because rewards are costly are particularly problematic
in that small amounts of nectar are unlikely to have a significant effect on the energy budget of orchids, and
because reproduction in orchids is often severely pollen-, rather than resource-limited. Several recent experi-
mental studies have shown that deception promotes cross-pollination, but it remains unknown whether actual
outcrossing rates are generally higher in deceptive orchids. Our review of the literature shows that there
is currently no evidence that deceptive orchids carry higher levels of genetic load (an indirect measure of out-
crossing rate) than their rewarding counterparts. Cross-pollination does, however, result in dramatic increases in
seed quality in almost all orchids and has the potential to increase pollen export (by reducing pollen discounting).
We suggest that floral deception is particularly beneficial, because of its promotion of outcrossing, when
pollinators are abundant, but that when pollinators are consistently rare, selection may favour a nectar reward or
a shift to autopollination. Given that nectar-rewardlessness is likely to have been the ancestral condition in
orchids and yet is evolutionarily labile, more attention will need to be given to explanations as to why deception
constitutes an ‘evolutionarily stable strategy’.
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self-pollination.
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I. INTRODUCTION

Orchidaceae with approximately 19 500 species (Dressler,
1993) is considered one of the largest families in the
plant kingdom (it is rivalled only by the Asteraceae, which
contains approximately 23 000 species : Bremer, 1994).
However, the radiation of the orchid family has probably
taken place in a comparatively short period (the earliest
orchid fossils appear in the Eocene) in comparison to
most flowering plant families, which had already started
to diversify in the Mid-Cretaceous (Beck, 1976; Crane,
Friis & Pederson, 1995; van der Cingel, 1995). Orchids
show a wide diversity of epiphytic and terrestrial growth
forms and have successfully colonized almost every habitat
on earth. However, it is their staggering variation in floral
form that has long attracted the interest of evolutionary
biologists. Although earlier botanists had described the
structure of orchid flowers and observed visits by insects,
the nature and variations of pollination mechanisms in
orchids were first fully appreciated by Charles Darwin. His
book On the various contrivances by which British and foreign orchids
are fertilised by insects, first published in 1862, is the record of
a great deal of painstaking and perceptive observation.
Darwin considered the adaptations of orchid flowers to their
animal pollinators as being among the best examples of
his idea of evolution through natural selection.

Pollination systems in orchids are often mistakenly
assumed to be the outcome of co-evolutionary processes
(van der Pijl & Dodson, 1966; Dressler, 1968; Dodson,
1975). Co-evolution between orchids and their pollinators
is probably uncommon (Szentesi, 2002) and most of the

evolution is unilateral on the orchid side without any
evolutionary changes in the pollinator (Williams, 1982).
Unilateral evolution can be attributed to orchids having
appeared when most key pollinator groups had already
evolved and established complex mutualisms with flowering
plants (Labandeira et al., 1994; Dilcher, 2000), orchids
typically constituting a minor element in plant guilds on
which pollinators depend for nectar (Jermy, 1999), and
orchids often being deceptive (see below) and therefore
unlikely to influence the evolution of pollinator traits (cf.
Johnson & Steiner, 1997).

Orchids frequently exploit existing plant-pollinator
relationships or even sexual systems of insects. This is
exemplified by species that achieve pollination through
deception (i.e. an absence of floral rewards for pollinators).
The discovery by Sprengel (1793) that many orchid flowers
do not contain nectar, and thus deceive their insect polli-
nators, was greeted with incredulity and disbelief. Darwin
(1877, p. 37) rejected the idea of floral deception on the
grounds that insects, particularly bees would be too intelli-
gent to fall for ‘ so gigantic an imposture ’. He also believed
that the apparently empty spurs of many orchid flowers
might contain nectar which would be released when ‘ insects
penetrate the lax inner membrane of the nectaries ’ with
their proboscides to ‘suck the copious fluid between the
two membranes ’ (Darwin, 1877, p. 40). There is now
overwhelming evidence that Darwin was mistaken and
that non-rewarding flowers are actually rather widespread
among Orchidaceae – between 6500 and 9000 species
(approximately one-third of the total) are believed to deceive
insect pollinators (van der Pijl & Dodson, 1966; Dressler,
1981; Ackerman, 1986; Renner, 2005). In this review we
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refer to orchid pollinators as insects for sake of convenience.
Birds are known to pollinate several orchid species, but
have not thus far been implicated in any system of floral
deception.

Non-rewarding flowers have evolved in at least 32
angiosperm families (Renner, 2005). However, of the 7500
angiosperm species pollinated through deception, approxi-
mately 6500 are orchids (Renner, 2005). Clearly there
is something about orchids that predisposes them to the
evolution of deceptive pollination systems. However, a clear
explanation of why the occurrence of deceptive pollination
systems is concentrated in the Orchidaceae has proved
elusive. In the past ten years renewed efforts have been
made to formulate and test hypotheses about the evolution
and maintenance of deceptive pollination systems in
orchids.

The aim of this review is to summarise the mechanisms of
floral deception in orchids, evaluate their occurrence within
the family, discuss potential fitness benefits of non-rewarding
flowers in the light of former and recent studies, and con-
sider the evolutionary stability of deceptive strategies.

II. DECEPTION MECHANISMS IN ORCHIDS

The mechanisms by which non-rewarding orchids attract
pollinators vary from generalized food deception, through
specific mimicry of other flowers and deceptive sapro-
myophily, to sexual deceit (leading in many cases to
pseudocopulation). The terminology and earlier literature
on mimicry and deception in plant pollination, including
orchids are summarised in van der Pijl (1966), Little (1983),
Dafni (1984, 1986), Ackerman (1986), Dafni & Bernhardt
(1990), and van der Cingel (1995). However, during the
recent decade numerous new studies on orchid pollination
systems have been published and have given new insights
into the function of deceptive mechanisms. The most
common types of deceptive pollination in orchids involve
food and sexual deception (Table 1).

(1 ) Generalized food deception

Most orchids with deceptive pollination mechanisms
exploit the innate food-foraging behaviour of pollinators

(Nilsson, 1980; Dafni, 1983). In order to attract pollinators,
orchids advertise general floral signals, which are typical
for rewarding plant species, such as inflorescence shape,
flower colour, scent, nectar guides, spurs and pollen-like
papillae (Gumbert & Kunze, 2001; Galizia et al., 2005).
Consequently, Little (1983) termed this type as ‘mimicry
based on naı̈veté ’. Dafni (1986) suggested replacing it
with the term ‘non-model mimicry’, as he believed other
examples of mimicry (i.e. Batesian mimicry and imitation
of male flowers by female ones in plants with unisexual
flowers) are based also on visits from inexperienced polli-
nators. However, since orchids adopting this strategy do
not imitate any specific rewarding plants and Batesian
mimicry usually involves experienced (conditioned) polli-
nators (Johnson, 2000), the term ‘mimicry’ seems to be
inappropriate. The pollinators may be recently emerged
insects, immigrants, or exploratory pollinators whose food
resources are becoming depleted. The term ‘generalized
food deception’ (Steiner, 1998) has become widely used
to describe this form of deception in orchids.

Relatively few orchid genera attract pollinators by offer-
ing pseudopollen or false anthers, most notably Polystachya
(Davies, Roberts & Turner, 2002), Maxillaria (van der Pijl
& Dodson, 1966; Davies, Winters & Turner, 2000), certain
species of Eria (Beck, 1914; Davies & Turner, 2004 c) and
Dendrobium (Kjellsson & Rasmussen, 1987; Davies & Turner,
2004b). The bright yellow tufts of hairs on the lips attract
pollen-foraging bees in Arethusa bulbosa, Pogonia ophioglossoides,
Calopogon tuberosus and Cephalanthera longifolia (Thien
& Marcks, 1972; Dressler, 1981; Dafni & Ivri, 1981b).
Dummy anthers occur in Caladenia (Bates, 1985), Glossodia,
Elythranthera, and Eriochilus species (Dafni & Bernhardt,
1990). In Polystachya, Maxillaria and Eria species, the labellar
papillae and trichomes are rich in protein and starch, and
are actively collected by the pollinators (Dodson & Frymire,
1961; Dodson, 1962; Goss, 1977; Beardsell & Bernhardt,
1982; Dressler, 1993; Davies, Turner & Gregg, 2003).
However, we have no direct evidence that pseudopollen
is used for nutrition by pollinators. Most papillae contain
pigments or act as osmophores and probably represent
visual or tactile cues that guide pollinators into flowers
(Davies & Turner, 2004a).

Orchids associated with generalized food deception
very often flower gregariously in early spring, exhibit floral
colour polymorphism and exploit newly emerged bees and
bumblebees after hibernation (Heinrich, 1975). Sometimes
rewardless species benefit from growing in the vicinity
of nectariferous co-flowering species, as these increase
abundance of pollinators in the orchids ’ local habitat (viz
a viz the magnet species effect : Laverty, 1992; Lammi &
Kuitunen, 1995; Johnson et al., 2003b).

Deception based on instinctive foraging behaviour
occurs in numerous, unrelated orchid genera, e.g. in Orchis
(Dafni, 1983, 1987; Nilsson, 1983a ; Johnson & Nilsson,
1999), Dactylorhiza (Nilsson, 1980; Lammi & Kuitunen,
1995), Disa (Johnson, 1993; Johnson & Steiner, 1995, 1997;
Johnson, Linder & Steiner, 1998), Calypso (Ackerman, 1981;
Boyden, 1982; Alexandersson & Agren, 1996), Cypripedium
(Stoutamire, 1971; Nilsson, 1979), Anacamptis (Nilsson,
1984; Johnson et al., 2003b ; Johnson, Peter & Agren, 2004),

Table 1. Classification of deception mechanisms in the
Orchidaceae and their occurrence. The number of genera
was estimated according to van der Cingel (1995, 2001)

Mechanism
Exploited insect
behaviour

No. of
genera

Generalized food deception Food foraging 38
Batesian floral mimicry Food foraging 9
Brood-site imitation Oviposition 11
Shelter imitation Sleep/warmth 1
Pseudoantagonism Territoriality 2
Rendezvous attraction Sexual 4
Sexual deception Sexual 18
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Brassavola (Schemske, 1980), Calopogon (Firmage & Cole,
1988), Pogonia (Ushimaru & Nakata, 2001), and Dipodium
(Bernhardt & Burns-Balogh, 1983).

(2 ) Batesian floral mimicry

Deceptive orchids that achieve pollination through the
resemblance of their flowers to those of particular rewarding
species have been termed Batesian mimics (Brown &
Kodric-Brown, 1979; Bierzychudek, 1981; Dafni, 1984;
Johnson, 1994; Roy & Widmer, 1999). Some authors, such
as Little (1983), have rejected this term on the grounds
that Batesian mimicry in animals involves repulsion of
predators (Bates, 1862), rather than attraction, as is the
case with flowers and their pollinators. Nevertheless,
the evolution of Batesian mimicry in plants and animals is
essentially similar, involving rare species that benefit from
an adaptive resemblance to more common species (cf.
Starrett, 1993). There is increasing evidence that flowers
of some Batesian mimics bear such a close resemblance
to their models that pollinators are literally unable to dis-
tinguish between the two kinds of inflorescences (Dafni &
Ivri, 1981a ; Johnson, 1994, 2000; Johnson, Alexandersson
& Linder, 2003a). Matching of the model’s flower colour
by the mimic appears to be critical for successful attraction
of pollinators. Food-deceptive floral mimicry is associated
with pollinators that use mainly colour, rather than scent,
as their primary foraging cue (Johnson, 1994, 2000; Johnson
et al., 2003a ; Anderson, Johnson & Carbutt, 2005).
Nevertheless, even bees can be deceived by mimics that
match the flower colour of models, yet differ substantially
in floral scent (Gumbert & Kunze, 2001; Galizia et al.,
2005).

Batesian mimics often form part of pollination guilds
involving several rewarding plant species that show conver-
gent evolution to common pollinator(s) (Brown & Kodric-
Brown, 1979; Dafni & Bernhardt, 1990; Johnson et al.,
2003a). Dafni & Bernhardt (1990) used the term ‘guild
mimicry’ to describe a situation where at least two of
the rewarding species resemble each other. Although they
attributed such resemblance to ‘Müllerian floral mimicry’
(Müller, 1878; Proctor & Yeo, 1973), in reality Müllerian
mimicry is almost impossible to distinguish from con-
vergent evolution. However, in such guilds it is not un-
common for a non-rewarding species to mimic other
rewarding species. This pattern has been termed ‘adver-
gent ’ evolution as it is the mimic, rather than the models,
that undergoes the evolutionary modification that results
in resemblance (Brower & Brower, 1972; Johnson et al.,
2003a). Guild mimicry has been reported for the southern
Australian genera Diuris (Beardsell et al., 1986) and Thelymitra
(Dafni & Calder, 1987), which resemble legumes and
buzz-pollinated lilioids or dicots, respectively. In the South
African genus Disa, several species form part of guilds polli-
nated by butterflies (Johnson, 1994) or long-proboscid
flies (Johnson, 2000; Johnson et al., 2003a ; Anderson et al.,
2005). The convergence among guild members includes
similarities in flowering time, spur or flower tube length, and
flower colour (Johnson & Steiner, 1997; Johnson et al.,
2003a).

(3) Brood-site imitation

This category describes plants that employ deceitful
attraction of insects that are seeking an appropriate place
to lay their eggs. The flowers tend to mimic standard
oviposition sites such as carrion (sapromyophily), dung
(copromyophily, coprocantharophily), or the fruiting body
of fungi (mycetophily). The victims are mostly Diptera and
Coleoptera. Apart from Orchidaceae, this strategy is found
in Aristolochiaceae, Asclepiadaceae, and Araceae. Among
orchids, this deception mechanism is mainly confined to
tropical and subtropical areas and is completely missing
from Europe (but see Epipactis consimilis below).

Various orchids in both the Old and New World floras
are pollinated by flies, attracted by the brownish or dull
reddish floral colours and foul odours. Such species often
posses’ trap flowers with a one-way passage pouch or
trap insects by movement of the lip, e.g. genera Pterostylis,
Paphiopedilum, Bulbophyllum, Cirrhopetalum, Megaclinium
(closely related to Bulbophyllum), Anguloa, Masdevallia and
Pleurothalis (van der Pijl, 1966; Proctor, Yeo & Lack,
1996; Borba & Semir, 2001).

Some orchids show features of the fungus-gnat syndrome.
The Australian genus Corybas has geoflorous, dark-
coloured flowers, which are pollinated by ovipositing fungus
gnats (Jones, 1970). The orchid seems to mimic the fruiting
bodies of basidiomycetes. Similarly the South American
genus Dracula has a fungus-like or fishy scent and fungus-
like shaped lip (Vogel, 1978). A Japanese Cypripedium species
bears modified flowers that droop near the ground, in which
the entrance to the pouched lip has the appearance of a
small mushroom (Proctor et al., 1996).

The Afro-Asiatic species Epipactis veratrifolia (syn. E. con-
similis) combines oviposition-site mimicry with a nectar
reward. The species misleads female syrphids in laying
eggs on the labellum, which bears a combination of orange
and black structures probably perceived as aphids (Ivri &
Dafni, 1977). Egg-laying is triggered by a combination of
visual, tactile and olfactory stimuli. The hoverfly males
defend a territory around these orchids and contribute to
pollination in a more traditional way as nectar feeders. A
similar mechanism was reported for the genus Paphiopedilum
(section Coryopedilum), where syrphid flies are deceived into
laying their eggs in the flowers, especially on the staminode
(Atwood, 1985).

(4) Shelter imitation

Some flowers offer insects a floral tube in which to rest
or sleep, as a hiding place during windy and rainy weather
(Gumprecht, 1977), or for thermoregulation, because the
temperature in the flower tube may exceed the ambient
temperature by up to 3 xC during the morning hours (Dafni,
Ivri & Brantjes, 1981; Felicioli et al., 1998). In orchids, this
mechanism appears to be confined to the Mediterranean
genus Serapias, whose extremely dark red-coloured flowers
appear to mimic bee nest entrances (Dafni et al., 1981).
Given that bees probably obtain real shelter in the flowers
of Serapias (Dafni et al., 1981), the characterisation of this
system as ‘deceptive ’ is open to debate.
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(5 ) Pseudoantagonism

Orchids with this mechanism exploit the territorial behav-
iour of some Hymenoptera, which attack the flowers
when they are vibrating in the wind and pollinate them in
the process. The defensive behaviour of territorial Centris
spp. bees may be exploited by some Oncidium and Tolumnia
species (Dodson & Frymire, 1961; Neirenberg, 1972). This
mechanism has not been thoroughly studied and seems to
be extremely rare. Ackerman (1986) suggested that this
interaction may be mutualistic as bees become better
territorial defenders with practice. However, no evidence
yet supports this hypothesis.

(6 ) Rendezvous attraction

Some orchids exploit the sexual drive of male bees during
mate-seeking flights. Male bees, when inspecting surround-
ing flowers for females foraging on pollen or nectar, are
deceived by orchids with similar colour, shape and scent as
co-blooming rewarding plants. This mechanism has been
reported in the European orchid species, Cephalanthera rubra
(Nilsson, 1983b) and Orchis papilionacea (Vogel, 1972), as well
as in the African Disa obtusa and Ceratandra grandiflora species
(Johnson & Steiner, 1994; Steiner, 1998).

(7 ) Sexual response

The evolution of sexual deceit was seen as one of the major
enigmas of orchid evolution in the past. In this case, the
flowers mimic female insect mating signals, especially their
pheromones, and are pollinated by the lured male insects,
which often try to copulate with the flower. The sexual
response ranges from a less advanced stage, in which the
orchids deceive pollinators mainly by olfactory cues
(Bino, dafni & Meeuse, 1982; Stoutamire, 1983), towards
highly adapted flowers which elicit ‘pseudocopulation’ by
male insects (Correvon & Pouyanne, 1916; Pouyanne,
1917; Coleman, 1927; Ames, 1937; Kullenberg, 1961;
Priesner, 1973; Kullenberg & Bergström, 1973, 1976b ;
Vogel, 1976; Kullenberg, Borg-Karlson & Kullenberg,
1984; Vöth, 1984; Paulus & Gack, 1990; Peakall & Beattie,
1996; Ayasse et al., 2000, 2003; Schiestl & Ayasse, 2002;
Schiestl et al., 1999, 2000, 2003). Roy and Widmer (1999)
and Schiestl (2005) extend the concept of Batesian mimicry
in plants to cover not only food-deceptive floral mimicry (see
above), but also floral mimicry of insects (sexual deception),
on the basis that deceptive mimics in both systems should
experience negative frequency-dependent pollination
success.

Dressler (1981) suggested that rendezvous attraction
might have been the first step in evolution towards pseudo-
copulation. This would be followed by a stage in which
flowers emit signals releasing at least certain phases of
the male sexual behaviour (Bergström, 1978). This step is
represented in the East Mediterranean species Orchis galilaea,
which is pollinated exclusively by males of Lasiglossum
marginatum (syn. Halictus marginatus), while females visit the
flowers of other plant families (Bino et al., 1982). The be-
haviour of the males landing on dark spots on the labellum
suggests that the strong, musk-like scent of the flowers

is similar to that of the pheromone of the females. This
intermediate state also appears in the South Australian
species Caladenia patersonii pollinated by tiphiid males
(Stoutamire, 1983). However, sexual deceit in this species
appears to be mixed with generalized food deception, as
the flowers are pollinated also by other insects of both
sexes, including bees and syrphid flies searching for food
(Stoutamire, 1983).

Orchid flowers that elicit ‘pseudocopulation’ by male
insects possess not only sex-pheromone-like odours, but
also visual and tactile cues (Bergström, 1978). The odour
plays a key role in the long-range attraction of males to
the flower (Kullenberg, 1961; Peakall, 1990; Schiestl
et al., 1999). During pseudocopulation the pollinia become
attached to the male’s head or abdomen and are transferred
to a flower of another plant during the next copulation
attempt (Borg-Karlson, 1990). The pheromone-like odour
of orchids is often even more attractive for male insects
than that of their own females, but males can learn to avoid
areas containing orchids or females can increase their
attractiveness by walking away from the orchid colony
(Wong & Schiestl, 2002; Wong, Salzmann & Schiestl, 2004).
Sexual deception imposes strong specialisation in orchids
as insect pheromones are generally highly species specific
(Paulus & Gack, 1990). The specialisation ranges from
species that lure few pollinator taxa (Paulus & Gack, 1990;
Schiestl et al., 1999, 2000) to species pollinated exclusively
by one pollinator (Schiestl et al., 2003; Schiestl, Peakall &
Mant, 2004).

True sexual deception is found only in the orchid family,
although exploitation of mate-seeking behaviour through
petal ornamentation that resembles insects has been
reported in plants belonging to other families (Johnson &
Midgley, 1997; Johnson & Dafni, 1998). Unrelated orchid
genera that exploit mating behaviour of pollinators by
mimicking attraction cues of female insects evolved inde-
pendently in Europe, Australia, Africa and South America.
Pseudocopulation is found in Europe only in the genus
Ophrys (Kullenberg, 1961; Paulus & Gack, 1990; Schiestl
et al., 1999), while in southern Australia at least ten orchid
genera (Coleman, 1928; Stoutamire, 1975, 1983; Peakall,
Beattie & James, 1987; Peakall, 1990; Dafni & Bernhardt,
1990; Bower, 1996; Schiestl et al., 2004), in South America
five genera (van der Pijl & Dodson, 1966; Dod, 1976;
Singer, 2002; Singer et al., 2004), and the Central American
genus Lepanthes (Blanco & Barboza, 2001, 2005) are involved
in sexual deception. Sexual deception has also been reported
in two African Disa species (Steiner, Whitehead & Johnson,
1994).

III. FLORAL DECEPTION – A PRIMITIVE OR

DERIVED FEATURE?

Nectar rewards have traditionally been thought to be an
ancestral condition within the orchids with the nectarless
condition having evolved more recently (van der Pijl, 1966;
Dressler, 1981; Dafni, 1987; Dafni & Bernhardt, 1990;
Aceto et al., 1999). Burns-Balogh, Szlachetko & Dafni
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(1987), for example, suggest that within the subfamily
Neottioideae, the more primitive groups (Limodorinae,
Neottinae) offer nectar as a reward for pollination whereas
the more advanced group (Cephalantherinae) exhibits
mimicry and deceit.

The first fossil plant, Eoorchis miocaenica that shows a
typical orchidaceous flower and fruit is dated back to the
Eocene (Mehl, 1984). The family Orchidaceae was formerly
included in the Liliales (Darwin, 1877; Dahlgren, Clifford
& Yeo, 1985), due to possession of certain morphological
characters, including the presence of perigonal nectaries, a
character otherwise rare in monocots (Rudall et al., 2000;
Smets et al., 2000). However, recent molecular analyses
suggest that Orchidaceae represents the earliest-diverging
asparagoid lineage (Fay et al., 2000) with close relationships
to the nectarless family Hypoxidaceae (Rudall, 2002).
The two families have epigynous flowers that lack septal
nectaries. Assuming that orchids do indeed belong to
the Asparagales, the absence of septal nectaries may be
associated with the secondary development of perigonal
nectaries (Rudall et al., 2000; Smets et al., 2000).

Dressler (1993) speculated that the ‘primitive ’ orchid
or orchid ancestor would have had inferior trilocular ovaries
(a three-chambered ovary surrounded by and joined to the
basal parts of the flower), six free stamens with eventual
stamen/staminodial fusion to the style, basifixed anthers
with introrse dehiscense (anther attached at its base to apex
of filament, dehiscing longitudinally inward), and fleshy
fruits with small seeds. Rudall & Bateman (2002) added
mycorrhizal associations, which allowed the development
of the characteristic ‘dust seeds ’, and emphasised the
importance of epigyny and syncarpy, which are pre-
requisites for gynostemium formation. According to both
molecular (Cameron et al., 1999; Kocyan et al., 2004) and
morphological analyses (Freudenstein & Rasmussen, 1999),
the apostasioid orchids (genera Apostasia and Neuwiedia)
appear to be the basal clade in Orchidaceae. Both genera
are nectarless, using pollen as a reward (Garay, 1960).
Neuwiedia has resupinate flowers (i.e. the flower is twisted
180x around its flower stalk to position the lip on the
bottom), a poorly developed labellum, and is pollinated by
Trigona bees. Apostasia has non-resupinate Solanum-type
flowers with fused anthers and an actinomorphic perianth
lacking a recognisable labellum (Kocyan & Endress, 2001).
The flower morphology of this sister group to all other
Orchidaceae represents the buzz-pollination syndrome
(i.e. flowers need high-frequency vibrations to release their
pollen from the anthers), which is often associated with
lack of nectar reward to pollinators (Rudall, 2002). The most
parsimonious conclusion from cladistic analyses is thus
that the first orchid ancestors were nectarless pollen-
rewarding plants (Bateman et al., 2003). Nevertheless, the
independent loss of nectar in both of the basal apostasioid
and cypripedioid lineages cannot be fully excluded as a
possibility. Moreover, some recent analyses using nuclear
and plastid genes do not support the basal position of
Cypripedioideae and, instead, indicate that an ancestor
to the Vanilloideae, which contains both nectarless and
nectariferous species, diverged to give rise to the Cypri-
pedioideae and remainder of the Orchidaceae (Rudall &

Bateman, 2002; Kocyan et al., 2004). In this case, nectar
production would be likely to have been lost and regained
independently in different clades (Aceto et al., 1999;
Cozzolino et al., 2001; Bateman et al., 2003).

In the case of sexual deceit, Ames (1937) and Meeuse
(1973) suggested that pollinators were originally rewarded
by food. Kullenberg & Bergström (1976a) postulated that
chemical attractants of insects are ancient in evolutionary
terms and that the scent was already present before the
loss of reward occurred and before the labellum acquired a
female-like structure (Kullenberg, 1961, see also Schiestl
et al., 1999). Such a transitional step is recorded in Diuris
pedunculata, an Australian species that contains nectar and
attracts only males of Halictus lanuginosus (Coleman, 1932).
Bergström (1978) speculated that the early forms of
sexually deceptive orchids were pollinated by both male
and female bees. Further evolution towards exclusive polli-
nation by males could easily promote loss of reward due
to the male’s weak feeding instinct (Faegri & van der Pijl,
1979). None of the sexually deceptive species that elicit
‘pseudocopulation’ in their pollinators is known to offer an
edible reward (Dafni & Bernhardt, 1990). However, the
existence of species that exploit both food and sexual drives
suggests that sexual deception could also evolve from
food deception (Vogel, 1972; Bino et al., 1982; Stoutamire,
1983; Dafni & Bernhardt, 1990; Nilsson, 1992; Kores
et al., 2001).

IV. FITNESS BENEFITS OF FLORAL

DECEPTION: GENERAL HYPOTHESES

The widespread occurrence of floral deception within
Orchidaceae, despite its apparent evolutionary lability,
suggests that it confers fitness advantages under some
circumstances. There are two general hypotheses as to how
deception could increase fitness in plants. The first is that
deception allows reallocation of resources from rewards
to fruit production and future flowering. The second is
that deception results in pollinators visiting fewer flowers
on a plant, thereby promoting outcrossing.

(1) The resource-limitation hypothesis

The resource-limitation hypothesis assumes that sexual
reproduction (flower production and fruit set) is limited
primarily by resources (Lloyd, 1980; Stephenson, 1981;
Calvo & Horvitz, 1990; Calvo, 1993; Mattila & Kuitunen,
2000). Resources available for seed development may be
restrictive both within and between seasons (Meléndez-
Ackerman, Ackerman & Rodriguez-Robles, 2000). Elevated
fruit set within one season may be at the expense of
future growth, probability of flowering, reproduction
or survival (Lovett-Doust & Lovett-Doust, 1988; Snow &
Whigham, 1989; Ackerman & Montalvo, 1990; Bartareau,
1995). This is not a strict rule, however, as certain species,
like Cypripedium acaule, show long-term symptoms of
resource limitation only after exceptionally heavy fruiting
episodes (Primack & Stacy, 1998). Some orchid species,
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e.g. nectariferous Spiranthes spiralis, exhibit not only a cost of
fruiting, but also a cost of flowering (Willems & Dorland,
2000).

Profuse production of nectar can consume a substantial
fraction of a plant’s photosynthetic production during the
flowering period. Estimates of nectar production costs in
terms of the daily amount of photosynthates vary from 3.3%
in short-lived flowers to 37% in long-lived flowers
(Southwick, 1984; Harder & Barrett, 1992). Pyke (1991) was
the first to demonstrate that nectar entails a cost to a plant
in terms of growth and/or reproduction. Indirect evidence
for the cost of nectar is that it is often reabsorbed after
pollination, presumably for allocation of carbohydrates
to fruit production (Burquez & Corbet, 1991; Koopowitz &
Marchant, 1998; Luyt & Johnson, 2002; Stpiczynska,
2003).

Reproduction in non-rewarding orchids is often severely
pollen-limited, even over a lifetime (Calvo, 1993; Tremblay
et al., 2005). Thus it is hard to understand why resources
in these orchids are not allocated to a component of polli-
nator attraction such as nectar. One possibility is that allo-
cation to the floral display (size of inflorescence, its colour,
scent etc.) is even more important for alleviating pollen-
limitation than nectar. Plants with larger floral displays
increase the number of pollinator approaches due to a
strong long-distance attractiveness (Sih & Baltus, 1987;
Hessing, 1988).

(2 ) The outcrossing hypothesis

Plants that reward their pollinators experience higher
visitation rates, more flowers probed per visit, and longer
duration of pollinator visits (Hodges, 1981; Klinkhamer, de
Jong & de Bruhn, 1989; Harder & Barrett, 1995; Johnson
& Nilsson, 1999; Johnson et al., 2004). However, this
behaviour also tends to result in higher levels of pollinator-
mediated self-pollination, both within and among flowers (de
Jong, Klinkhamer & van Staalduinen, 1992; Klinkhamer,

de Jong & Metz, 1994; Snow et al., 1996; Barrett & Harder,
1996; Rademaker & de Jong, 1998; Barrett, 2003; Johnson
et al., 2004) (Table 2).

The absence of nectar in many orchids may serve to
reduce levels of pollinator-mediated geitonogamy, as polli-
nators tend to visit fewer flowers on such plants (Dafni &
Ivri, 1979; Nilsson, 1980, 1983a ; Ackerman, 1986; Dafni,
1987; Johnson & Nilsson, 1999). Significant increases in
self-pollination have been shown to result from experi-
mental supplementation of artificial nectar to flowers of
the deceptive species Anacamptis morio (Johnson et al., 2004).
Other experiments with labelled pollen in orchids also
tend to be consistent with this hypothesis (Tables 2 and 3).
In rewarding species, Comparettia falcata andMicrotis parviflora,
more than 70% of pollen transfers were involved in self-
pollination (Peakall & Beattie, 1991; Salguero-Farı́a &
Ackerman, 1999).

In general, self-pollination has negative consequences
for plant fitness. Firstly, it reduces pollen export and fewer
ovules are successfully fertilized by outcross pollen, pro-
cesses known as pollen and ovule discounting, respectively
(Holsinger & Thomson, 1994; Herlihy & Eckert, 2002).
Secondly, self-fertilization reduces levels of genetic vari-
ation (Charlesworth & Charlesworth, 1995) and may cause
inbreeding depression (ID) characterised by lower repro-
ductive output and lower viability of offspring (Andersson
& Waldmann, 2002). Even though orchids are typically
self-compatible, the seed set and seed quality is normally
greatly reduced after self-pollination (Tremblay et al., 2005).
Inbreeding depression is typically caused either by the
expression of lethal deleterious recessive alleles that were
formerly masked by the heterozygous state or by the loss
of heterozygote advantage (Charlesworth & Charlesworth,
1987; Barrett & Charlesworth, 1991).

The relationship between inbreeding and inbreeding
depression is likely to depend on the characteristic rate of
selfing. Jain (1976) suggested that when self-pollination
is common, plants might not suffer from inbreeding

Table 2. Efficiency of pollen transport in rewarding and rewardless orchids

Species Pollen vector
Pollinium
type

Self-pollination
(%of pollen
transfer)

Mean pollen
transfer
distance (m) Reference

Rewarding
Aerangis ellisii Hawkmoths Solid 30 c.5 Nilsson et al. (1992a)
Comparettia falcata Hummingbird Solid 85 — Salguero-Farı́a & Ackerman (1999)
Disa cooperi Hawkmoths Sectile 29–52* 2.7–10.6 Johnson et al. (2005)
Epipactis helleborine Wasps Sectile 40 — Light & MacConaill (1998)
Microtis parviflora Ants Sectile 70 0.22 Peakall & Beattie (1991)
Platanthera bifolia Moths and

hawkmoths
Sectile 23–38* — Maad & Reinhammar (2004)

Prasophyllum fimbria Bees and wasps Sectile 22 8 Peakall (1989)

Rewardless
Caladenia tentactulata Wasps Sectile <10 17 Peakall & Beattie (1996)
Cypripedium calceolus Bees Soft 0 5.2 Tremblay (1994)
Calypso bulbosa Bumblebee Solid 18–37* 15 Alexandersson (1999)

* Values for two years of study of same population.
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depression because most of the recessive deleterious alleles
have already been purged from the population. Husband
& Schemske (1996) compiled data on 79 populations of
54 species of plants and found a negative correlation
between inbreeding depression and selfing rate. Thus if
deceptive orchid species regularly experience high levels of
outcrossing, one would expect to find a higher cost of selfing
in deceptive species than in rewarding ones. Inbreeding
depression is most often expressed in the early stages of
seed development (Levin, 1984). Our survey of published
breeding system data for 46 orchid species (Table 4)
revealed that the percentage of seeds with viable embryos
is significantly lower in capsules resulting from self- than
cross-pollination for both rewarding and rewardless species,
respectively (t-test for dependent samples : t=x5.22,
d.f.=28, P<0.00001; t=x3.67, d.f.=16, P<0.002).
However, the level of inbreeding depression [measured
as ID=(CxS )/C, where C and S represent percentage of
seeds with embryos of cross- and self-pollinated capsules,
respectively Johnston & Schoen, 1994], does not differ
between rewarding and rewardless species (t-test for inde-
pendent samples : t=0.68, P=0.498, 17 rewardless and 29
rewarding species). Though not significant, the mean level
of apparent inbreeding depression appeared higher for
rewarding orchids than for rewardless ones (0.34 versus 0.26,
respectively). Regardless of nectar production, the higher
costs of selfing could be associated with a particular group of
pollinators, especially with insects promoting outcrossing.
We found a non-significant trend for the type of pollinator
to influence the cost of selfing (one-way ANOVA, F5,40=
1.54, P=0.197), with the level of inbreeding depression
decreasing in the series : flies – butterflies and moths – bees
and bumblebees – hummingbirds – wasps – ants.

Observations of pollinator behaviour on orchids and
artificial rewardless flowers suggest that pollen dispersal
distances may be greater in deceptive species due to the
tendency of pollinators to depart from unrewarding
patches, and conversely to remain in rewarding ones
(Peakall & Beattie, 1996; Alexandersson, 1999; Keasar,
2000; Smithson and Gigord, 2003; Renner, 2005; Table 2).
Thus inbreeding may result not only from geitonogamous
pollination, but also from pollination between neighbouring

individuals (biparental inbreeding: Vekemans & Hardy,
2004). This idea has been recently supported by several
studies showing the fine-scale genetic structure of orchid
populations (Machon et al., 2003). In rewardless Cephalanthera
longibracteata, relatedness between plants growing closer
than 3 m was comparable to that expected for half sibs
and first cousins (Chung, Nason & Chung, 2004). Similarly
in rewardless Dactylorhiza praetermissa, hand-pollination be-
tween plants growing less than 10 m from the mother plant
resulted in a lower proportion of seeds with embryos and
decreased germination rate than for pollination between
plants growing at more than 20 m distance (Ferdy et al.,
2001).

V. FITNESS BENEFITS OF FLORAL DECEPTION:

ORCHID-SPECIFIC HYPOTHESES

Non-rewarding flowers have evolved independently in
many plant families ; however, the vast majority of deceptive
species belong to the orchid family. There have been a
number of hypotheses for the concentration of non-
rewarding species in the orchid family.

(1) Low-density hypothesis

The low-density hypothesis was raised for the first time by
Macior (1971). Orchids often occur in small, scattered
populations, which may reflect the limited availability
and ephemeral nature of their habitats (Ackerman, 1986;
Nilsson, 1992). With individual plants so scattered, even
rewarding plants are unlikely to encourage foraging con-
stancy in pollinators (Heinrich & Raven, 1972; Ackerman,
1986; Dafni & Bernhardt, 1990). Given that rewards may
have little fitness benefit under such circumstances, re-
sources used for their production may be better transferred
to other traits that increase fitness, such as a larger floral
display (Schemske, 1980) or longer blooming period
(Proctor & Harder, 1995). We need further studies which
test the relationship between plant density and selection for
floral rewards.

Table 3. Effects of nectar supplementation on pollinator behaviour (number of flowers probed and time spent per inflorescence
or flower) and pollen transfer (number of pollinaria removed, amount of pollen involved in self-pollination and number of
massulae deposited per stigma). The symbols indicate a significant increase (+), decrease (x), non-significant effect (NS) or trait that
was not measured (NM)

Species

no. of
flowers
probed

Probing
time

no. of pollinia
removed Self-pollination

no. of massulae
deposited Reference

Barlia robertiana + NS x NS NS Smithson & Gigord (2001)
Anacamptis morio + + NS NS NM Smithson (2002)
Anacamptis morio + + +* NM NM Johnson & Nilsson (1999)
Orchis mascula + + NM NM NM
Anacamptis morio + + + + NM Johnson et al. (2004)
Disa pulchra + + + + + Jersáková & Johnson (2005)

* Significant in one of two populations studied.
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(2 ) Pollinia-removal hypothesis

This hypothesis is based on the notion that orchid pollinia
can be removed or deposited in a single visit, thus obviating
the need for rewards that encourage multiple visits by
pollinators. However, orchids as a group suffer higher

pollen removal failure than other monocot species with
granular pollen (reviewed by Harder, 2000). The generally
high removal failure for orchids is apparent from a sample
of 53 orchid species, for which an average of 48.3% of
flowers fail to have any pollinia removed (Harder, 2000).
This removal failure is most likely a consequence of low

Table 4. Effect of self- and cross-pollination on the percentage of seeds with embryos in rewarding and rewardless orchids

Species Pollinator

Seeds with embryos (%)

ReferenceSelf- Cross-

Rewardless species
Caladenia tentactulata Thynnine wasp 74 73.7 Peakall & Beattie (1996)
Cleistes divaricata Bees, bumblebees 64 89 Gregg (1989)
Dactylorhiza praetermissa Bumblebees 91 89.3 Ferdy et al. (2001)
Dactylorhiza sambucina Bumblebees 43 75 Nilsson (1980)
Disa atricapilla Wasps 82.2 94.7 Steiner et al. (1994)
Disa draconis Long-tongue flies 65.3 93.2 Johnson & Steiner (1997)
Disa ferruginea Butterflies 36.4 86.4 Johnson (1994)
Disa pulchra Long-tongue flies 48.2 96.6 Johnson (2000)
Diuris maculata Bees 94 82 Beardsell et al. (1986)
Epidendrum ciliare Moth 79.3 74.5 Ackerman & Montalvo (1990)
Orchis mascula Bees, bumblebees 59.8 75.1 Nilsson (1983a)
Anacamptis (Orchis) morio Bumblebees 10.1 35.2 Nilsson (1984)
Orchis spitzelii Bumblebees 54 86.9 Fritz (1990)
Pleurothallis fabiobarrosii Flies 32.8 95.7 Borba et al. (2001)
Pleurothallis johannensis Flies 20.7 93.5 Borba et al. (2001)
Xylobium squalens Trigona bees 74.7 82.3 Pintaúdi et al. (1990)
Leporella fimbriata Ants 50 40.3 Peakall (1989)

Mean¡S.D. 57.6¡24.0 80.2¡17.8

Rewarding species
Brownleea galpinii ssp. major Long-tongue flies 1.4 79.7 Johnson et al. (2003a)
Bulbophyllum involutum Milichiid flies 52.7 71.2 Borba et al. (1999)
Bulbophyllum ipanemense Milichiid flies 44.4 47 Borba et al. (1999)
Bulbophyllum weddellii Milichiid flies 68.3 54.4 Borba et al. (1999)
Catasetum viridiflavum Euglossine bees 67.8 98.3 Tremblay et al. (2005)
Comparettia falcata Hummingbirds 97.2 95.8 Salguero-Farı́a & Ackerman (1999)
Cynorchis uniflora Hawkmoths 36 61 Nilsson et al. (1992b)
Goodyera oblongifolia Bumblebees 40 60 Kallunki (1981)
Goodyera oblongifolia Bumblebees 52.7 83.8 Ackerman (1975)
Goodyera pubescens Bumblebees 77 64.5 Kallunki (1981)
Goodyera repens var. ophioides Bumblebees 36 63.5 Kallunki (1981)
Goodyera tesselata Bumblebees 88 79 Kallunki (1981)
Listera cordata Fungus gnats 88.5 94.2 Meléndez-Ackerman & Ackerman (2001)
Listera ovata Beetles,wasps 89.3 97.7 Nilsson (1981)
Microtis parviflora Ants 83 89 Peakall & Beattie (1989)
Mystacidium venosum Hawkmoths 37.1 99 Luyt & Johnson (2001)
Platanthera bifolia Hawkmoths 43.8 84.2 Nilsson (1983 c)
Platanthera chlorantha Hawkmoths 23.9 73.5 Nilsson (1983 c)
Platanthera ciliaris Butterflies 66 76 Gregg (1990)
Platanthera lacera Moths 67 47 Gregg (1990)
Platanthera leucophaea Hawkmoths 29 50.5 Wallace, 2003
Platanthera stricta Bumblebee, moths, flies 45 82 Patt et al. (1989)
Pleurothallis adamantinensis Flies 29.3 95 Borba et al. (2001)
Pleurothallis ochreata Flies 30.7 96.4 Borba et al. (2001)
Pleurothallis teres Flies 2.8 92.1 Borba et al. (2001)
Satyrium bicorne Moths 14.8 66.1 Ellis & Johnson (1999)
Satyrium coriifolium Sunbirds 29.3 65.6 Ellis & Johnson (1999)
Satyrium erectum Bees 14.5 57.9 Ellis & Johnson (1999)
Vanilla claviculata Euglossine bees 63 88 Tremblay et al. (2005)

Mean¡S.D. 48.9¡26.8 76.3¡16.8
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levels of visitation to orchid flowers, as Harder (2000) noted
that complete removal failure occurs significantly less often
for plant species that reward their pollinators and receive
frequent visits (34.6%) than for deceitful species (63.6%).

Pollinia are not specific to Orchidaceae : similar structures
have evolved independently in the non-related family
Apocynaceae with radially symmetrical flowers and rela-
tively promiscuous pollination systems (Ollerton & Liede,
1997). The asclepiad Apocynaceae have five solid pollinia
per flower, thus the flower needs to be visited more than
once to maximize pollen transfer. This could be a reason
why most asclepiads provide pollinators with abundant
nectar. Only a few genera such as Ceropegia and Stapelia,
pollinated by carrion flies, have rewardless flowers (Vogel,
1961; Meve & Liede, 1994).

A recent version of the pollinia-removal hypothesis
suggests that deception actually increases the rate of removal
of pollinia from flowers (Smithson & Gigord, 2001).
Although decreased pollinia removal was associated with
nectar addition in one study (Smithson & Gigord, 2001),
other studies have shown either no effect of nectar addition
on pollinia removal (Smithson, 2002) or a positive effect
of nectar on pollinia removal (Johnson & Nilsson, 1999;
Harder, 2000; Johnson et al., 2004; Table 3). It is possible
that the decreased pollinia removal in Barlia robertiana
flowers when nectar is added (Smithson & Gigord, 2001)
represents an artefact of changes in pollinator probing
position or in the effectiveness of the viscidium.

(3 ) Transport efficiency hypothesis

The reduced transport loss achieved by adhesive attach-
ment of pollen to pollinators may be a key innovation that
enabled the evolution of deceit pollination in orchids (van
der Pijl & Dodson, 1966; Dressler, 1990; Paulus & Gack,
1990). Among animal-pollinated species, the fate of trans-
ported pollen depends fundamentally on whether pollen
travels as independent grains or in aggregations. Pollen
fates in species with granular pollen are characterised by
low levels of removal failure and high levels of transport
loss – usually less than 1% of pollen reaches a stigma
(Harder, 2000). Orchids, by contrast, experience much
higher removal failure, but their ability to glue pollinia onto
pollinators greatly reduces transport loss ; for 11 orchid
species 9.6–36.9% of removed pollen dispersed successfully
(Harder, 2000). Thus, one may hypothesize that by having
fewer transport losses orchids may have less cause to provide
rewards to induce foraging constancy in pollinators. This
idea seems to be supported by a recent survey (Harder,
2000), although it unfortunately included few deceptive
species : the percentage of pollen reaching stigmas in
deceptive orchids (range 5–13%, mean=9%, N=2) was
similar to that in rewarding orchids (range 3–22%, mean=
11.4%, N=9; t-test for independent samples : t=x0.42,
d.f.=9, P>0.680).

(4 ) Limited pollen-carryover hypothesis

Angiosperm pollen may be dispersed in different ways,
either as single units or united in various manners (clumps,

tetrads or multiples of tetrads ; Knox & McConchie, 1986;
Pacini & Franchie, 1998). Type of dispersal pollen unit
has important consequences for pollen carryover (i.e. the
fraction of pollen carried over from one flower to the next).
If orchids have limited pollen carryover, which renders
them prone to geitonogamous self-pollination, then selection
may favour deception as this discourages pollinators from
visiting many flowers on a plant (see Section IV.2).

In orchids, pollen carryover differs according to the
degree of cohesion of pollen in the pollinium, which may
be soft, sectile (comprised of sub-units known as massulae)
or hard (Burns-Balogh & Bernhardt, 1985; Johnson &
Edwards, 2000; Pacini & Hesse, 2002). Hard (solid, com-
pact) pollinia, the most common type among orchids
(Dressler, 1993), are deposited as an entire unit on the
stigma. Soft (mealy) and sectile (massulate) pollinia disinte-
grate on the contact with the sticky stigmatic surface into
smaller pollen loads, which may be deposited sequentially
over several flowers. One would therefore expect that
pollen carryover would be limited in orchids with solid
pollinaria, and be more extensive in orchids with sectile or
mealy pollinia.

Pollen carryover should be higher in orchid species with
mechanisms that allow insects to visit a long sequence of
flowers before pollination occurs. Mechanisms that may
increase pollen carryover include: (a) bending movement
of pollinaria, (b) shrinking of the pollinium, (c) retention of
anther cap, (d) protandry, and (e) sequential flowering
(Catling & Catling, 1991; Johnson & Edwards, 2000).

Johnson & Nilsson (1999) and Johnson et al. (2004)
allowed insects carrying freshly removed sectile pollinaria
to visit a sequence of emasculated virgin flowers to evaluate
pollen carryover in the deceptive species Orchis mascula and
Anacamptis morio, and the rewarding species Platanthera chlo-
rantha. The average number of flowers receiving pollen
from a single pollinium was 6.6 for O. mascula, 7.7 for A. morio
and 13.8 for P. chlorantha. The fraction of pollen carried
over from flower to flower was 0.67 for O. mascula, 0.72 for
A. morio and 0.87 for P. chlorantha. Nectar addition to flowers
of A. morio had no effect on the pollen carryover (Johnson
et al., 2004). Johnson & Nilsson (1999) thus concluded, at
least for orchids with sectile pollinia, that pollen carryover is
not restricted and in combination with other mechanisms
that promote outcrossing may not pose a serious problem
for geitonogamy and pollen discounting.

Johnson & Edwards (2000) suggested the pollen carryover
of hard pollinia may also be extensive due to imperfections
in the pollen-transfer process, as captured pollinators were
carrying large loads of solid-type pollinaria. To draw general
conclusions on pollen carryover and its evolutionary conse-
quences, the actual levels of pollen carryover in orchids with
hard-pollinia must be examined in future research.

VI. IS FLORAL DECEPTION EVOLUTIONARILY

STABLE?

Non-rewarding orchids are, on average, less fecund than
their rewarding counterparts (Dafni & Ivri, 1979; Gill,
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1989; Neiland & Wilcock, 1998; Tremblay et al., 2005).
Direct observations indicate very low pollinator visitation
rates, and as a consequence production of fruits is much
lower in deceptive than in rewarding species. For example,
the average fruit set in 29 European rewarding and in
eight rewardless orchid species was 63.1 and 27.7%, re-
spectively (Neiland & Wilcock, 1998). Johnson & Bond
(1997) found strikingly similar fruit set values in South
African orchids : 64.8% in 12 rewarding species and 25.2%
in 21 nectarless species. This trend was recently confirmed
by a broad survey of the orchid family (Tremblay et al.,
2005) : a per cent fruit set in non-rewarding species
(median¡S.E.=20.7¡1.7 ; N=130) is roughly half that
of rewarding species (37.1¡3.2 ; N=84).

Given that nectar-deception is evolutionarily ancestral
in orchids and yet associated with very low levels of fruit
set, it is difficult to explain why mutations for reward
production would not rapidly spread to fixation (Gill, 1989).
There have been a number of documented instances
of nectar-rewarding species evolving within deceptive
lineages (cf. Johnson et al., 1998), so lack of mutations is
unlikely to suffice as an explanation for the apparent stability
of the deceptive strategy.

Johnson et al. (2004) argued that genetic load and polli-
nator abundance would have major influences on the fate
of mutations for nectar-production. When pollinators are
very rare, mutations for nectar production should spread
within a population even when there are high levels of
genetic load. This is because the benefits from having more
flowers pollinated and exporting pollen would outweigh the
costs in terms of inbreeding depression, pollen discounting
and resource usage. On the other hand, when pollinators
are very common, mutations for nectar production would
be unlikely to spread through a population because the
marginal gains in seed production and pollen removal
would be outweighed by the loss of fitness through in-
breeding depression, pollen discounting and resource use.
Another factor that may slow rates of fixation is the scenario
of ‘auto-mimicry ’ whereby pollinators would not easily be
able to distinguish between rewarding and non-rewarding
plants using visual cues (Renner, 2005), though the use of
spatial cues is a possibility (Bell, 1986).

VII. CONCLUSIONS

(1) The orchid family is exceptional for its unusually
high frequency of non-rewarding species compared to
other plant families. Generalized food deception is the
most common mechanism of pollination in non-rewarding
orchids (reported in 38 genera) followed by sexual deception
(18 genera).

(2) Of the many hypotheses that have been put forward
to explain the evolution (or persistence) of deception in
orchids, the promotion of cross-pollination has received the
most theoretical and empirical support. The higher seed
quality and more efficient pollen export that results from
cross-pollination in deceptive orchids would be particularly
beneficial when pollinators are common. When visitation

rates to deceptive orchids drop below a certain threshold at
which these advantages are outweighed by very low seed
quantity, then selection should favour reward production
or autogamy.

(3) The evolution of deception in orchids cannot be
explained by a single hypothesis because the conditions that
favour rewarding or non-rewarding strategies are highly
context dependent. In this review we have identified pollen
packaging, genetic load, population density and pollinator
abundance as key variables whose role in the evolution of
deception needs to be explored further.
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