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Abstract

The classical definition of evolutionary stability assumes that the fitness of each phenotype is fully determined by the composition

of phenotypes in the population and by the strategies of each of these phenotypes. In natural populations, however, stochasticity

often plays a crucial role in determining the fitness of an individual and a deterministic fitness function is probably rather rare. For

example, choices of a new host plant, prey or oviposition patch are completely stochastic processes. Here we introduce a new

definition of ESS that takes into account the effect of stochasticity on individual fitness. Then we show an application of this

definition in a realistic system.

r 2004 Published by Elsevier Inc.
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1. Introduction

Evolutionary stability of a phenotype (ESS) is defined
as a property of the phenotype to defy the attacks of
other phenotypes (Hofbauer and Sigmund, 1988). It is
therefore assumed that fitness of each phenotype is fully
determined by the composition of phenotypes in the
population and by the strategies of each of these
phenotypes. However, this is not always the case. Some
examples are given below:

Each phenotype is characterised by a set of para-
meters, which in reality is so large that they cannot all be
included into the definition of a phenotype fitness
function, as verification of such a definition would not
be possible. Therefore only a subset of important
parameters is used and verified and the remainder is
treated as random noise.

Certain external factors (e.g., temperature or wind)
can substantially affect the immediate behaviour of
a phenotype. We cannot ignore the evolutionary
consequences of these factors, but their prediction is
impossible. Thus even these processes are treated as if
they acted at random.

When ‘‘redistributing’’ in the most general meaning of
this word, organisms often choose a new host plant,
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prey patch, oviposition patch, mating partner, etc. at
random. The result of this choice—and consequently
fitness of each individual—is therefore a realisation of a
stochastic process.

In these three examples, which are common in nature,
stochasticity plays a crucial role in determining the
fitness of an individual and a deterministic fitness
function is probably rather rare. Sometimes, as in the
biologically most important example (example 3), it is
even impossible to define fitness in a deterministic way.

Some definitions of ESS based on mathematical
models of population dynamics do include stochastic
effects as random perturbations of equilibria of such
systems (Cressman, 1996). In others the stochastic effect
is incorporated in the construction of a mathematical
model of population dynamics or into the expression for
the fitness function (Yoshimura and Clark, 1991; Sasaki
and Ellner, 1995; Cressman, 1996; Yasuda and Ohnu-
ma, 1999). The local character of the definition of ESS is
then evident. Many authors (Ellner, 1985; Thomas,
1984; Yoshimura and Shields, 1987; Cressman, 1996) try
to transform this fact to finding conditions for local
stability of equilibria of stochastic differential equations.
Their stochastic character is defined by a random set of
input parameters. Properties of the solutions of stochas-
tic differential equations are, however, strongly depen-
dent on the shape of the random distribution of these
parameters. These random distributions are usually
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supposed to be normal, which makes them less realistic,
but the calculations are then relatively easy.

Here we introduce a new definition of ESS that takes
into account the effect of stochasticity on individual
fitness. Then we show how to apply this definition in a
realistic system. We define the ESS for the predator
oviposition strategy in a situation, where both the
distribution of the prey on plants and subsequent
immigration of the predator are supposed to be
stochastic processes.
2. ESS definition in a stochastic situation

The original definition of ESS:

Definition 1. Let us denote by W(I,Q), continuous in the
second variable, the fitness function of an individual
I-phenotype in a population, whose composition is
Q and by QðeÞ ¼ eJ þ ð1 � eÞI ; eA½0; 1�; the mixed
population, where e is the frequency of J-phenotypes
and ð1 � eÞ that of I-phenotypes.

A population of I-phenotypes is said to be evolutionary

stable (ES), if there exists an e0; 14e040 such that for

each e04e40 and for each JaI

WðJ; eJ þ ð1 � eÞIÞoWðI ; eJ þ ð1 � eÞIÞ: ð1Þ

(Here and in the following all fitness functions W(I, .)
are assumed to be nonnegative.)

When a metapopulation is considered, consisting of
many populations living in n discrete patches (as for
example a metapopulation of insects that consists of
many populations, each living on one plant), then
phenotype I is ES in n patches, if and only if it is ES in
each patch.

In this definition, it is implicitly assumed that W(. , .)
is a deterministic function and therefore it can be
decided, whether (1) holds, i.e., whether phenotype I is
successful in competition with phenotype J, or not. This
is not always the case. Fitness of an individual quite
often depends on external factors with unknown under-
lying dynamics (e.g., weather) which have therefore to
be considered as random noise.

To modify (1), so as to be applicable in a randomly
fluctuating environment, we define a random ‘‘resolu-
tion function’’ R(W(I,Q,),z), where z is a random
variable representing the influence of randomly fluctu-
ating environment. Function R can attain only two
values: 1 if (1) holds and 0 otherwise. In addition, there
are many possibilities for the population composition Q.
In the classical approach, Eq. (1) must hold for any e
ð14e04e40Þ: If the population is composed at
random, some of the compositions may be less probable
than other ones. For example, in the classical ESS
approach it is highly probable that a population consists
of a small number of mutants and of a large number of
resident individuals. Therefore we define a random
distribution D2[0;1] for the definition of the population
composition, QðeÞ; eAD2½0; 1�. These considerations lead
us to the following modification of Definition 1:

Definition 2. Let D1[0;1], D2[0;1] be random distribu-
tions on the interval [0;1], zAD1[0;1], eAD2[0;1]. Let I

and J be phenotypes, W(I,Q) the fitness function of
phenotype I in a population, the composition of which is
Q. Let QðeÞ ¼ eJ þ ð1 � eÞI : Let 0pep1.

Define R(. , .) as follows:

RðWðI ;QðeÞÞ; zÞ ¼ 1;

if
WðI ;QðeÞÞ

WðI ;QðeÞÞ þ WðJ;QðeÞÞ4z; ð2Þ

RðWðI ;QðeÞÞ; zÞ ¼ 0;

if
WðI ;QðeÞÞ

WðI ;QðeÞÞ þ WðJ;QðeÞÞpz:

Then phenotype I is a-successful in competition with

phenotype J, if the probability that RðWðI ;QðeÞÞ; zÞ ¼ 1
in the set of eA D2½0; 1� and zAD1½0; 1� is greater or equal
to a:

PfRðWðI ;QðeÞÞ; zÞ ¼ 1; eAD2½0; 1�;
zAD1½0; 1�gXa: ð3Þ

Lemma 1. Let there exist an e0; 14e040 so that

Pfe0pe; eAD2½0; 1�g¼PfzX1
2
; zAD1½0; 1�g ¼ 0: Then if

phenotype I is ESS according to definition 1, it is 1-
successful in competition with all phenotypes JaI :

Proof. If I is an ESS, then from (1), for all phenotypes
JaI and for all eoe0; then it holds

WðI ;QðeÞÞ
WðI ;QðeÞÞ þ WðJ;QðeÞÞ4

1

2
:

From (2) and PfzX1
2
; zAD1½0; 1�g ¼ 0: it follows

PfRðWðI ;QðeÞÞ; zÞ ¼ 1; eAD2½0; 1�; zAD1g ¼ 1: &

Lemma 1 relates the classical definition of ESS to the
condition of a-success. The local and non-random
character of ESS is clearly seen from here: An ESS is
a-successful only if the distributions of e and z are of a
special type. Definition (2) has the advantage that the
criterion for I being a-successful (Eq. (3)) is probabil-
istic. This means that I can lose some contests with other
phenotypes, but the measure of the set of such events
(their probability) is smaller than (1�a)U This becomes
extremely important when one relates simulation results
to ESS definition in a stochastic situation and thus
bridges the local character of ESS.

Evolution can be seen—both temporally and
spatially—as a very long (or infinite) sequence of
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realisations of a stochastic process—for example, many
generations of individuals living on many host plants. It
may therefore happen that in a random situation there
does not exist any phenotype satisfying conditions of
Definition 1. How then is the evolutionary ‘‘stability’’ of
a phenotype determined? In other words: How many
other phenotypes has a certain phenotype to encounter
and defeat in order to become ‘‘evolutionary stable’’ in a
stochastic situation? We tackle this problem as follows:
Assume that evolution is realised independently n times
(in different instants and/or places).

Definition 3. Let n be a natural number. Let D1½0; 1�;
D2½0; 1� be random distributions on the interval [0;1],
ekAD2½0; 1�; zkAD1½0; 1�; k=1,2,y,n. Let z=(z1,y,zn),
e=(e1;y,en). Let I and J be phenotypes, let QkðeÞ ¼
ekJ þ ð1 � ekÞI ; ekA[0,1], k=1,2,y,n be compositions of
the population. Let QðeÞ ¼ ðQ1ðe1Þ;y;QnðenÞÞ: Then
we define a random fitness function of the phenotype I

as follows:

WLðI ;QðeÞ; zÞ ¼
Xn

i¼1

WðI ;QiðeiÞÞRðWðI ;QiðeiÞÞ; ziÞ

ð4Þ
Phenotype I is said to be a-n-successful in competition

with phenotype J, if

PfWLðI ;QðeÞ; zÞXWLðJ;QðeÞ; zÞ;
ekAD2½0; 1�; zkAD1½0; 1�; k ¼ 1; 2;y; ngXa: ð5Þ

Remark 1. Definition 3 states that phenotype I is a-n-
successful against phenotype J, if with probability Xa
phenotype I produces more progeny (i.e., has greater
fitness) in the n independent realisations of the process
than phenotype J.

Remark 2. Let there exist an e0; 14e040 so that
Pfe0pek; ekAD2½0; 1�; k ¼ 1; 2;y; ng ¼
PfzkX

1
2
; zkAD1½0; 1�; k ¼ 1; 2;y; ng ¼ 0: Then if the

phenotype I is ESS according to Definition 1, it is 1-n-
successful in competition with all phenotypes JaI :

Let O be the set of all possible phenotypes. If J1,
J2AO, J1aJ2, then—in the general case—J1 and J2 may
not occur with the same probability in the evolutionary
process. Therefore we define another random distribu-
tion D3=D3(O)U The ESS with probability (p-n-ESS)
can now be defined as follows:

Definition 4. Let n be a natural number, D1½0; 1�; D2½0; 1�
random distributions on the interval ½0; 1�; zkAD1½0; 1�;
ekAD2ðOÞ;D2½0; 1�; k ¼ 1; 2;y; n; zðeÞ ¼ ðz1ðe1Þ;y;
znðenÞÞ; O the set of all phenotypes, D3 ¼ D3ðOÞ a
random distribution on O: Let for any I, J AD3ðOÞ:
QkðekÞ ¼ ekJ þ ð1 � ekÞI ; ekA½0; 1�; k ¼ 1; 2;y; n be
compositions of the population. Let QðeÞ ¼ ðQ1ðe1Þ;y;
QnðenÞÞ: Let WLðI ;QðeÞ; zðeÞÞ be defined by (4).
Phenotype I is said to be evolutionary stable with

probability p (abbreviated by p-n-ESS), if

PfWLðI ;QðeÞ; zÞXWLðJ;QðeÞ; zÞ; ekAD2;

zkAD1; JAD3; JaI ; k ¼ 1;y; ngXp: ð6Þ

Remark 3. If phenotype I is a-n-successful in competi-
tion with any other phenotype J, then it is a-n-ESS.

Lemma 2. Let there exist e0; 14e040 so that

Pfe0pek; ekAD2½0; 1�; k ¼ 1; 2;y; ng ¼ PfzkX
1
2
; zkA

D1½0; 1�; k ¼ 1; 2;y; ng ¼ 0: If phenotype I is ESS in all

n patches, then I is 1-n-ESS.

Proof. According to the Remark 2, if I is an ESS, then it
is 1-n-successful in competition with any JaI. Accord-
ing to the Remark 3 this implies that I is 1-n-ESS. &

3. Application of the concept of p-ESS to insect

populations

Here we present a simple example of evolution of life
history strategies of a hypothetical insect predator
species in a realistic predator–prey system (motivated
by ladybird–aphid systems). The illustrative situation
described below typically requires a p-n-ESS concept, as
in our model—although juvenile predators stay in one
patch of prey during their development (one season)—
adult predators redistribute themselves between patches
at random after each season. The quality of any patch
they find and assess for oviposition (patch is of a good
quality, if it contains a large number of prey and a low
number of conspecifics) can therefore be considered as
realisation of a random variable. Thus the potential
fitness of a predatory mother (number of her descen-
dants at the end of the next season) is not a deterministic
function of her strategy, but strongly depends on the
quality of the random sequence of patches she visits
during her reproductive period.

This example illustrates that the classical ESS
approach is irrelevant in certain cases and the p-ESS
concept must be used. However, it also demonstrates a
biologically very interesting phenomenon: that evolu-
tion can lead to optimisation of predator oviposition
strategies in the sense of reduction of intraspecific
competition—avoidance of reproduction in sites already
occupied by conspecifics, rather than to maximisation of
its feeding rate.

3.1. Biological assumptions

Real insect predator–prey systems substantially differ
from what is assumed by the classical (Lotka–Volterra,
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Holling type, etc.) predator–prey models used by
modellers (Dixon et al., 1997; Kindlmann and Dixon,
1999b). The main differences are (Dixon et al., 1995;
Kindlmann and Dixon, 1999a): (i) Juveniles and adults
have to be considered as two different entities, as the
former stay within one patch and do not reproduce,
while the latter move between patches of prey and
reproduce there. (ii) Because of their high mobility, food
availability seems to be much less restrictive for adults
than juveniles, which are confined to one patch. There-
fore, the functional response does not seem to be
important for adults. (iii) Egg and larval cannibalism are
common in insect predators (Osawa, 1989, 1991, 1992).
Consequently, there is a strong selection pressure on
adult predators to lay their eggs only in patches in the
early stages of their development and avoid those
containing conspecific larvae. This determines the strate-
gies of predatory adults to a much greater extent than
availability of food in one prey patch (Dixon et al., 1995,
1997; Kindlmann and Dixon, 1999a, b; Osawa, 1992).

Expressed in mathematical terms, in a realistic
predator–prey metapopulation model one has to assume
two thresholds for the population size in the patch: a
lower threshold for the prey and an upper threshold for
the predator. Below the lower threshold for prey
population number, the predator offspring might starve,
above the upper threshold for predator population
number there is a large risk of predator offspring being
cannibalised by conspecifics (Kindlmann and Dixon,
1999b).

Practical biological consequences of the above-men-
tioned assumptions for insect predator–prey systems will
be published elsewhere. Here we concentrate on the
algorithm that finds the p-n-ESS in this situation.

3.2. Model description

1. There are n patches (‘‘plants’’), m generations of
predator–prey metapopulation, each generation consists
of X prey individuals and of Y predator individuals.
2. In each generation, j, each possible predator
phenotype Ij is characterised by two numbers:
2.1. xIj—the lower threshold of population size of
the prey in the patch, below which the predator will
not lay eggs.

2.2. yIj—the upper threshold of population size of
predator in the patch, above which the predator will
not lay eggs.
3. The pairs of phenotype characteristics are uniformly
distributed in the set [X1,X2]
 [Y1,Y2], X1,X2,Y1,Y2 are
non-negative real numbers. According to Definition 4, O
= [X1,X2]
 [Y1,Y2] and D3(O) is a uniform distribution
on O.
4. D1 is a uniform distribution on [0;1], zAD1[0;1] is a
random variable representing influence of randomly
fluctuating environment sensu Definition 2.
5. D2[0;1] is a uniform distribution on the interval
[0;1],eAD2[0;1].
6. In each generation, j, we tested success of predator
phenotype Ij in competition with phenotype Jj in a
population, the composition of which is Q(e)=
eJj+(1�e)Ij in a randomly fluctuating environment
defined by point 4 sensu Definition 2. The test consisted
of the following steps:
6.1. The total of n patches were sequentially
colonised by the X prey individuals. In the model
this was assured by sequential selection of X

random numbers from a uniform distribution on
the interval [0,n]. The total number of prey
individuals in kth patch was increased by 1,
whenever this random number was in the interval
[k�1,k].

6.2. After that, the n patches were sequentially
‘‘colonised’’ by predators:

6.2.1. In order to keep on average the above-
mentioned proportion of phenotypes in offspring
numbers, a random number was chosen from
[0,1]. If this random number was smaller than e,
it was assumed that the predator searching for
a patch in which to lay an egg was of phenotype
Jj, otherwise it was assumed to be of pheno-
type Ij.

6.2.2. A patch was chosen at random in the same
manner as it was colonised by prey.

6.2.3. If the total number of prey individuals was
larger than xIj (or xJj, respectively) and if the total
number of predator individuals was smaller than yIj

(or yJj, respectively), the number of predators in this
patch was increased by 1.

6.2.4. If the total number of prey individuals was
lower than xIj (or xJj, respectively) or if the total
number of predator individuals was higher than yIj

(or yJj, respectively) the predator was assumed not
to reproduce and go to another patch—step 6.2.2.
was repeated.

6.2.5. Steps 6.2.2–6.2.4 were repeated until a
suitable patch with more than xIj (xJj) prey
individuals and less than yIj (xJj) predators was
found, but not more than 10 times. If during the 10
trials the patch is not found, the predator is
discarded.

6.2.6. Procedure 6.2.2–6.2.5 was repeated Y

times.

6.2.7. Thus each of the patches was colonised by a
mixture of Ij and Jj phenotypes. In each patch, k,
denote by ajk the number of prey individuals, by
pðIj ; kÞ the number of phenotype Ij predator
individuals and by pðJj; kÞ the number of phenotype
Jj predator individuals. If pjk ¼ pðIj; kÞ þ pðJj; kÞ;
then it is reasonable to assume (Kindlmann and
Dixon, 1993) that the proportion of predatory
larvae surviving to adulthood for each of the
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phenotypes will be:
prðIj; kÞ ¼ pðIj; kÞajkZ
ajkZþ pjk

for phenotype Ij ;

prðJj; kÞ ¼ pðJj; kÞajkZ
ajkZþ pjk

for phenotype Jj;
where Z is the ‘‘preference for prey’’, common
for both phenotypes and for all generations, is
the relative likelihood of eating a prey com-
pared to a conspecific.
Frequencies of resident success
6.28. Then a random number from the uniform
[0,1] distribution was chosen. If this random
number was smaller than prðIj; kÞ=ðprðIj ; kÞ þ
prðJj ; kÞÞ; then the predator phenotype Ij was
assumed to win and survive in patch k and vice

versa.
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6.2.9. Fitness of each of the phenotypes, was
defined as FIj, respectively FJj was defined as
the sum of prðIj; kÞ; respectively prðJj; kÞ of all
patches, where the phenotype Ij, respectively Jj

‘‘won’’. If FIjXFJj, then phenotype Ij was
assumed to be more successful in this genera-
tion and tested against another Jj phenotype
and vice versa.
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Fig. 1. Frequencies of resident success of phenotypes characterised by

different combinations of xI (minimum number of prey), yI (maximum

number of ladybirds) during the generation cycle in our model run.
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Fig. 2. Probabilities described in (6) of different combinations of xI

(minimum number of prey), yI (maximum number of ladybirds) during

the generation cycle.
7. Phenotype that won was then tested against another
randomly chosen phenotype, Jjþ1: see point 3.

3.3. Relation between p-m-ESS and the applied model

According to Definition 2 and to the way the model
was built, fitness of phenotypes is calculated in each
patch k and in each generation j as

WðIj ;QkðekÞÞ ¼
pðIj; kÞajkZ
ajkZþ pjk

for phenotype I ;

WðJj;QkðekÞÞ ¼
pðJj; kÞajkZ
ajkZþ pjk

for phenotype J

in step 6.2.7. of the algorithm described above. It
strongly depends on the random way, how the
individuals are distributed on plants in steps 6.1 and
6.2 of the algorithm. The resolution function R from
Definition 2 is defined in 6.2.8 in our example. Thus the
classical ESS approach cannot be used and the p-m-ESS
theory is the only relevant one and Definitions 2–4 are to
be applied.

In our example of an insect population both
phenotypes and the external factors were chosen from
a uniform distribution. Computer simulation of evolu-
tion during 50 000 generations was performed. Fig. 1
shows the frequencies of success of different phenotypes
characterised by different combinations of xI (minimum
number of prey), yI (maximum number of predators)
during the generation cycle in our model run. Fig. 2
shows the probabilities described in (5) for different
combinations of xI (minimum number of prey), yI

(maximum number of predators) during the generation
cycle. Fig. 3 then shows the relation between p-m-ESS
(Fig. 2) and frequencies of occurrence of phenotypes
(Fig. 1). It is evident from this figure that these two
values are closely correlated.

The results shown in Figs. 1 and 2 have an important
biological meaning. The frequencies of success of
phenotypes decline quite steeply from the optimal
values. Therefore there should be a strong selection
pressure in insect predators for ovipositing only in
patches, where there is more than a certain minimum
number of prey and less than a certain maximum
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Dependence of the probability of resident success on the resident frequency
in real situation
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Fig. 3. Dependence of the probability p of resident success described in

(6) on the frequency of resident success.
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number of other predator offspring present. It was
shown that insect predators do not reproduce in
patches, where prey is scarce, but they also react to
‘‘oviposition deterring pheromone’’ released by conspe-
cific larvae by ceasing oviposition and looking for
another patch (Kindlmann and Dixon, 1999a). Thus
empirical data confirm our model predictions.
4. Conclusions

The classical definition of ESS does not apply to many
natural situations. Therefore, there is a need for a new
definition of an evolutionary stable phenotype. The
occurrence of phenotypes in the patch, composition of
predator populations in the patch and variation of
external factors are considered as stochastic factors.
These stochastic effects are expressed by distribution
functions. The new definition of ESS is not dependent
on the form of these distribution functions. The
uncertainties in the evolutionary process are reflected
in the new definition of ESS, which is stochastic rather
than deterministic. This concept makes it possible to
distinguish between evolutionary stability with the a
priori given probability p (p-m-ESS). This is a more
general definition than that of classical ESS, as the
relations are defined only with probability 1. Very
important for practical purposes seems to be finding the
explicit relation between p-m-ESS and frequencies of
occurrence of phenotypes. The phenotypes, which are
the most frequently successful in competition with other
ones are p-m-ESS with a large p.
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