Citační analýza publikací ke dni 1. 2. 2014
Jiří Pittner

3 An alternative approximation to state-specific multireference second-order Brillouin-Wigner perturbation theory: size-extensivity correction.: Aksu H.; *THEORETICAL CHEMISTRY ACCOUNTS* 2013, 132, 1325

4 Linear-response theory for Mukherjee’s multireference coupled-cluster method: Excitation energies.: Jagau T., Gauss J.; *JOURNAL OF CHEMICAL PHYSICS* 2012, 137, 044116

5 Inactive excitations in Mukherjee’s state-specific multireference coupled cluster theory treated with internal contraction: Development and applications.: Das S., Pathak S., Datta D., Mukherjee D.; *JOURNAL OF CHEMICAL PHYSICS* 2012, 136, 164104

7 Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations.: Sinha D., Maitra R., Mukherjee D.; *JOURNAL OF CHEMICAL PHYSICS* 2012, 137, 094104

8 Coupled-cluster theory and its equation-of-motion extensions.: Bartlett R.; *WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE* 2012, 2, 126-138

11 Superior performance of Mukherjee’s state-specific multi-reference coupled-cluster theory at the singles and doubles truncation scheme with localized active orbitals.: Das S., Kallay M., Mukherjee D.; *CHEMICAL PHYSICS* 2012, 392, 83-89

13 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF COMPUTATIONAL CHEMISTRY* 2012, 33, 1285-1303

14 Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.: Shen J., Piecuch P.; *JOURNAL OF CHEMICAL THEORY AND COMPUTATION* 2012, 8, 4968-4988

15 Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory.: Hanauer M., Koehn A.; *JOURNAL OF CHEMICAL PHYSICS* 2012, 136, 204107

16 Combining active-space coupled-cluster methods with moment energy corrections via the CC(P;Q) methodology, with benchmark calculations for biradical transition states.: Shen J., Piecuch P.; *JOURNAL OF CHEMICAL PHYSICS* 2012, 136, 144104

19 Multireference coupled-cluster study of the symmetry breaking in the C2B radical.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 074301

20 A regionally contracted multireference configuration interaction method: General theory and results of an incremental version.: Hoyau S., Maynau D., Malrieu J.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 054125

21 Application of the uncoupled state-specific multireference coupled cluster method to a weakly bonded system: exploring the ground state Be-2.: Mahapatra U., Chattopadhyay S.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2011, 44, 105102

26 DEVELOPMENT OF SAC-CI GENERAL-R METHOD FOR THEORETICAL FINE SPECTROSCOPY.: Ehara M., Nakatsuji H.; RECENT PROGRESS IN COUPLED CLUSTER METHODS: THEORY AND APPLICATIONS 2010, 79-112

27 Orbital Invariance Issue in Multireference Methods.: Kong L.; INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2010, 110, 2603-2613

28 Coupled cluster with singles, doubles, and partial higher-order excitations based on the corresponding orbitals: The formulation and test applications for bond breaking processes.: Xu E., Shen J., Kou Z., Li S.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 134110

29 Benchmark studies of variational, unitary and extended coupled cluster methods.: Cooper B., Knowles P.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 234102

30 Inclusion of selected higher excitations involving active orbitals in the state-specific multireference coupled-cluster theory.: Das S., Kallay M., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 234110

31 Molecular applications of analytical gradient approach for the improved virtual orbital-complete active space configuration interaction method.: Chaudhuri R., Chattopadhyay S., Mahapatra U., Freed K.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 034105

33 Multireference Coupled-Cluster Methods for Ground and Low-Lying Excited States. A Benchmark Illustration on CH+ Potentials.: Li X., Paldus J.; INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2010, 110, 2734-2743

34 A POSSIBILITY FOR A MULTI-REFERENCE COUPLED-CLUSTER: THE MRexpT ANSATZ.: Hanrath M.; RECENT PROGRESS IN COUPLED CLUSTER METHODS: THEORY AND APPLICATIONS 2010, 175-190

36 MkMRCC, APUCC, APUBD calculations of didehydronated species: comparison among calculated through-bond effective exchange integrals for diradicals.: Saito T., Nishihara S., Yamanaka S., Kitagawa Y., Kawakami T., Okumura M., Yamaguchi K.; *MOLECULAR PHYSICS* 2010, **108**, 2533-2541

37 Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF CHEMICAL PHYSICS* 2010, **133**, 074102

39 Parallel Calculation of CCSDT and Mk-MRCCSDT Energies.: Prochnow E., Harding M., Gauss J.; *JOURNAL OF CHEMICAL THEORY AND COMPUTATION* 2010, **6**, 2339-2347

40 Multireference coupled-cluster Ansatz.: Jeziorski B.; *MOLECULAR PHYSICS* 2010, **108**, 3043-3054

41 A worrisome failure of the CC2 coupled-cluster method when applied to ozone.: Pabst M., Koehn A., Gauss J., Stanton J.; *CHEMICAL PHYSICS LETTERS* 2010, **495**, 135-140

42 BLOCK CORRELATED COUPLED CLUSTER THEORY WITH A COMPLETE ACTIVE-SPACE SELF-CONSISTENT-FIELD REFERENCE FUNCTION: THE GENERAL FORMALISM AND APPLICATIONS.: Fang T., Shen J., Li S.; *RECENT PROGRESS IN COUPLED CLUSTER METHODS: THEORY AND APPLICATIONS* 2010, 145-174

43 Cholesky decomposition within local multireference singles and doubles configuration interaction.: Chwee T., Carter E.; *JOURNAL OF CHEMICAL PHYSICS* 2010, **132**, 074104

44 Active-space coupled-cluster methods.: Piecuch P.; *MOLECULAR PHYSICS* 2010, **108**, 2987-3015

45 Generating functionals based formulation of the method of moments of coupled cluster equations.: Kowalski K., Fan P.; *JOURNAL OF CHEMICAL PHYSICS* 2009, **130**, 084112

46 Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.: Li X., Paldus J.; *JOURNAL OF CHEMICAL PHYSICS* 2009, **131**, 114103

47 A companion perturbation theory for state-specific multireference coupled cluster methods.: Evangelista F., Simonett A., Schaefer H., Mukherjee D., Allen W.; *PHYSICAL CHEMISTRY CHEMICAL PHYSICS* 2009, **11**, 4728-4741

48 Performance of Block Correlated Coupled Cluster Method with the CASSCF Reference Function for Carbon-Carbon Bond Breaking in Hydrocarbons.: Shen J., Fang T., Li S.; *ADVANCES IN THE THEORY OF ATOMIC AND MOLECULAR SYSTEMS: CONCEPTUAL AND COMPUTATIONAL ADVANCES IN QUANTUM CHEMISTRY* 2009, 241-255

49 Extensive regularization of the coupled cluster methods based on the generating functional formalism: Application to gas-phase benchmarks and to the S(N)2 reaction of CHCl3 and OH- in water.: Kowalski K., Valiev M.; *JOURNAL OF CHEMICAL PHYSICS* 2009, **131**, 234107

50 Analytic gradients for the state-specific multireference coupled cluster singles and doubles model.: Prochnow E., Evangelista F., Schaefer H., Allen W., Gauss J.; *JOURNAL OF CHEMICAL PHYSICS* 2009, **131**, 064109

51 Application of state-specific multireference Moller-Plesset perturbation theory to nonsinglet states.: Mahapatra U., Chattopadhyay S., Chaudhuri R.; *JOURNAL OF CHEMICAL PHYSICS* 2009, **130**, 014101

52 Dissociating N2: a multi-reference coupled cluster study on the potential energy surfaces of ground and excited states.: Engels-Putzka A., Hanrath M.; *MOLECULAR PHYSICS* 2009, **107**, 143-155

53 Multi-reference coupled-cluster study of the potential energy surface of the hydrogen fluoride dissociation including excited states.: Engels-Putzka A., Hanrath M.; *JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM* 2009, **902**, 59-65

54 A multi-reference coupled-cluster study on the potential energy surface of N2 including ground and excited states: spin projections and wavefunction overlaps.: Hanrath M., Engels-Putzka A.; *THEORETICAL CHEMISTRY ACCOUNTS* 2009, **122**, 197-206

56 Comparative study of multireference perturbative theories for ground and excited states. Hoffmann M., Datta D., Das S., Mukherjee D., Szabados A., Rolik Z., Surjan P.; JOURNAL OF CHEMICAL PHYSICS 2009, 131, 204104

57 Full potential energy curve for N-2 by the reduced multireference coupled-cluster method. Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2008, 129, 054104

58 REDUCED MULTIREFERENCE COUPLED-CLUSTER METHOD AND ITS APPLICATION TO THE PYRIDYNNE DORADICALS. Li X., Paldus J.; JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2008, 7, 805-820

64 Spectroscopic constants of single-bond diatomic molecules and singlet-triplet gaps of diradicals by the block correlated coupled cluster theory. Shen J., Fang T., Hua W., Li S.; JOURNAL OF PHYSICAL CHEMISTRY A 2008, 112, 4703-4709

66 Higher excitations for an exponential multireference wavefunction Ansatz and single-reference based multireference coupled cluster Ansatz: Application to model systems H(4), P(4), and BeH(2). Hanrath M.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 154118

70 Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: The formula for general active spaces and its applications for multibond breaking systems. Fang T., Shen J., Li S.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 224107

74 Correction for triples in reduced multireference coupled-cluster approaches.: Paldus J., Li X.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2007, 72, 100-120

75 Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: The formulation and test applications for single bond breaking.: Fang T., Li S.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 204108

76 Coupling term derivation and general implementation of state-specific multireference coupled cluster theories.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 024102

79 Applications of linear response theories to compute the low-lying potential energy surfaces: state-specific MRCEPA-based approach.: Chattopadhyay S., Mukhopadhyay D.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2007, 40, 1787-1799

80 Making more extensive use of the coupled-cluster wave function: From the standard energy expression to the energy expectation value.: Meissner L., Hirata S., Bartlett R.; THEORETICAL CHEMISTRY ACCOUNTS 2006, 116, 440-449

81 Coupled-cluster and configuration-interaction approaches to quasidegeneracy.: Paldus J., Li X.; Recent Advances in the Theory of Chemical and Physical Systems 2006, 13-43

82 Towards the development and applications of manifestly spin-free multi-reference coupled electron-pair approximation-like methods: a state specific approach.: Pahari D., Ghosh P., Mukherjee D., Chattopadhyay S.; THEORETICAL CHEMISTRY ACCOUNTS 2006, 116, 621-636

84 Two new classes of non-iterative coupled-cluster methods derived from the method of moments of coupled-cluster equations.: Loch M., Lodriguito M., Piecuch P., Gour J.; MOLECULAR PHYSICS 2006, 104, 2149-2172

85 Tailored coupled cluster singles and doubles method applied to calculations on molecular structure and harmonic vibrational frequencies of ozone.: Hino O., Kinoshita T., Chan G., Bartlett R.; JOURNAL OF CHEMICAL PHYSICS 2006, 124, 114311

86 High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 154113

87 Explicitly intruder-free valence-universal multireference coupled cluster theory as applied to ionization spectroscopy.: Chattopadhyay S., Mitra A., Sinha D.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 244111

88 A matrix coupled-cluster correction to the multi-reference configuration interaction method.: Meissner L.; JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM 2006, 768, 63-69

89 Multireference state-specific coupled-cluster theory and multiconfigurationality index. BH dissociation.: Ivanov V., Adamowicz L., Lyakh D.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2005, 70, 1017-1033

95 Reappraisal of the role of size-extensive normalization for multireference coupled cluster (MRCC) theory using general model space: A valence universal MRCC approach.: Bera N., Ghosh S., Mukherjee D., Chattopadhyay S.; JOURNAL OF PHYSICAL CHEMISTRY A 2005, 109, 11462-11469

97 A state-specific approach to multireference coupled electron-pair approximation like methods: Development and applications.: Chattopadhyay S., Pahari D., Mukherjee D., Mahapatra U.; JOURNAL OF CHEMICAL PHYSICS 2004, 120, 5968-5986

101 Applications of size-consistent state-specific multi-reference coupled cluster (SS-MRCC) theory to study the potential energy curves of some interesting molecular systems.: Chattopadhyay S., Ghosh P., Mahapatra U.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2004, 37, 495-510

102 Can we avoid the intruder-state problems in the state-universal coupled-cluster approaches while preserving size extensivity?: Paldus J., Li X.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2004, 69, 90-104

103 Analysis of the multireference state-universal coupled-cluster Ansatz.: Paldus J., Li X.; JOURNAL OF CHEMICAL PHYSICS 2003, 118, 6769-6783

104 Effective Hamiltonian and intermediate Hamiltonian formulations of the Fock-space coupled-cluster method.: Meissner L., Gryniakow J.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2003, 68, 105-138

106 Optimized quasiparticle energies in many-body perturbation theory.: Surjan P., Kohalmi D., Szabados A.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2003, 68, 331-339

107 Use of 2h and 3h-p-like coupled-cluster Tamm-Dancoff approaches for the equilibrium properties of ozone.: Satelmeyer K., Schaefer H., Stanton J.; CHEMICAL PHYSICS LETTERS 2003, 378, 42-46

1. Theoretical study of triatomic silver (Ag-3) and its ions with coupled-cluster methods and correlation-consistent basis sets.: Huang M., Watts J.; *Physical Chemistry Chemical Physics* 2012, **14**, 6849-6855

3. Experimental and theoretical study on activation of the C-H bond in pyridine by [M-m](-) (M = Cu, Ag, Au, m=1-3): Liu X., Hamilton I., Han K., Tang Z.; *Physical Chemistry Chemical Physics* 2010, **12**, 10602-10609

4. The Electronic Structure of Silver Clusters.: Lei Y., Zhao G., Zeng Z.; *Journal of Nanoscience and Nanotechnology* 2010, **10**, 5483-5489

5. First-Principles Study of Small Oxidized Silver Clusters.: Wang Y., Gong X.; *Journal of Nanoscience and Nanotechnology* 2010, **10**, 5500-5506

7. Structure of Isolated Clusters.: Blackman J.; *Metallic Nanoparticles* 2009, 143-173

10. DFT study of electronic structure and geometry of anionic silver clusters Ag-n(-) (n =11, 12, 17): Matulis V., Mazheika A., Ivashkevich O.; *Journal of Molecular Structure-Theochem* 2008, **850**, 61-66

11. Structural evolution of Ag-n(v) (v = +/− 1, 0; n=3-14) clusters using genetic algorithm and density functional theory method.: Zhang H., Tian D.; *Computational Materials Science* 2008, **42**, 462-469

12. Theoretical study on the structure and formation mechanism of [C(6)H(5)M(m)](-) (M=Ag, Au; m=1-3): Liu X., Yang C., Zhang X., Han K., Tang Z.; *Journal of Computational Chemistry* 2008, **29**, 1667-1674

15. Photoelectron spectroscopy on small anionic copper-carbonyl clusters.: Stanzel J., Aziz E., Neeb M., Eberhardt W.; *Collection of Czechoslovak Chemical Communications* 2007, **72**, 1-14

16. Structure of Ag clusters grown on Fes-defect sites of an MgO(100) surface.: Barcaro G., Apra E., Fortunelli A.; *Chemistry-A European Journal* 2007, **13**, 6408-6418

17. Dynamics of clusters initiated by photon and surface impact.: Terasaki A.; *Journal of Physical Chemistry A* 2007, **111**, 7671-7689

18. Effect of Si adsorption on the atomic and electronic structure of Au-n clusters (n=1-8) and the Au (111) surface: First-principles calculations.: Majumder C.; *Physical Review B* 2007, **75**, 235409
19 Au-n and Ag-n (n=1-8) nanocluster catalysts: gas-phase reactivity to deposited structures.: Buratto S., Bowers M., Metiu H., Manard M., Tong X., Benz L., Kemper P., Chretien S.; ATOMIC CLUSTERS: FROM GAS PHASE TO DEPOSITED, VOL 12 2007, 151-199

20 Dissociation channels of silver bromide cluster Ag2Br, silver cluster Ag-3 and their ions studied by using alkali metal target.: Nagao H., Awazu K., Hayakawa S., Iwamoto K., Toyoda M., Ichihara T.; EUROPEAN PHYSICAL JOURNAL D 2007, 45, 279-287

22 Geometry, spectra, and reactivity of molecular systems.: Bersuker I.; JAHN-TELLER EFFECT 2006, 353-478

23 Experimental structure determination of silver cluster ions (Ag-n(+) , |n| = 79).: Blom M., Schooss D., Stairs J., Kappe M.; JOURNAL OF CHEMICAL PHYSICS 2006, 124, 244308

25 Quantum-mechanical study of small Au2Pdn (n=1 similar to 4) clusters.: Jian-Jun G., Ji-Xian Y., Dong D.; COMMUNICATIONS IN THEORETICAL PHYSICS 2006, 46, 155-160

26 Reactions of mixed silver-gold cluster cations AgmAun+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations.: Neumaier M., Weigend F., Hampe O., Kappe M.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 104308

27 Is the uniform electron gas limit important for small Ag clusters? Assessment of different density functionals for Ag-n (n|4).: Zhao S., Li Z., Wang W., Liu Z., Fan K., Xie Y., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2006, 124, 184102

28 Stable structural and magnetic isomers of small transition-metal clusters from the Ni group: an ab initio density-functional study.: Futschek T., Hafner J., Marsman M.; JOURNAL OF PHYSICS-CONDENSED MATTER 2006, 18, 9703-9748

29 Octahedral and tetrahedral coinage metal clusters: Is three-dimensional d-orbital aromaticity viable?: Corminboeuf C., Wannere C., Roy D., King R., Schleyer P.; INORGANIC CHEMISTRY 2006, 45, 214-219

31 Geometrical and electronic structures of AumAgn (2|n| plus n|8).: Zhao G., Zeng Z.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 014303

33 Comparison of the bonding in Au-8 and Cu-8: A density functional theory study.: Gronbeck H., Broqvist P.; PHYSICAL REVIEW B 2005, 71, 073408

34 Gas-phase kinetics and catalytic reactions of small silver and gold clusters.: Bernhardt T.; INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2005, 243, 1-29

35 First-principles study of neutral and charged silver clusters.: Wang Y., Gong X.; EUROPEAN PHYSICAL JOURNAL D 2005, 34, 19-22

37 Size dependence of the static polarizabilities and absorption spectra of Ag-n (n=2-8) clusters.: Idrobo J., Ogut S., Jellinek J.; PHYSICAL REVIEW B 2005, 72, 085445

39 Clusters of the Transition Metals.: Alonso J.; *STRUCTURE AND PROPERTIES OF ATOMIC NANOCLUSTERS* 2005, 229-275

41 Nonthermal power law decay of metal dimer anions.: Fedor J., Hansen K., Andersen J., Hvelplund P.; *PHYSICAL REVIEW LETTERS* 2005, 94, 113201

42 The structures of Ag-55(+) and Ag-55(-): Trapped ion electron diffraction and density functional theory.: Schooss D., Blom M., Parks J., Issendorff B., Haberland H., Kappes M.; *NANO LETTERS* 2005, 5, 1972-1977

46 Trends in the structure and bonding of noble metal clusters.: Fernandez E., Soler J., Garzon I., Balbas L.; *PHYSICAL REVIEW B* 2004, 70, 165403

47 DFT study of electronic structure and geometry of anionic copper clusters.: Matulis V., Ivashkevich O., Gurin V.; *JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM* 2004, 681, 169-176

49 Electronic structures and magic numbers of small silver clusters: A many-body perturbation-theoretic study.: Huda M., Ray A.; *PHYSICAL REVIEW A* 2003, 67, 013201

50 DFIF study of electronic structure and geometry of neutral and anionic silver clusters.: Matulis V., Ivashkevich O., Gurin V.; *JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM* 2003, 664, 291-308

51 A correlation study of small silver clusters.: Huda M., Ray A.; *EUROPEAN PHYSICAL JOURNAL D* 2003, 22, 217-227

52 Chemisorption on small clusters: can vertical detachment energy measurements provide chemical information? H on Au as a case study.: Fischer D., Wanda A., Curioni A., Gronbeck H., Burkart S., Gantefor G.; *CHEMICAL PHYSICS LETTERS* 2002, 361, 389-396

53 Bonding in Cu, Ag, and Au clusters: Relativistic effects, trends, and surprises.: Hakkinen H., Moseler M., Landman U.; *PHYSICAL REVIEW LETTERS* 2002, 89, 033401

54 Clusters as new materials.: Eberhardt W.; *SURFACE SCIENCE* 2002, 500, 242-270

55 Photoelectron spectroscopy of palladium-doped gold cluster anions; Au-n,Pd- (n=1-4).: Koyasu K., Mitsui M., Nakajima A., Kaya K.; *CHEMICAL PHYSICS LETTERS* 2002, 358, 224-230

57 Photoelectron spectroscopy of gold-silver binary cluster anions (AunAgm-; 2 ¡= n+m ¡= 4).: Negishi Y., Nakamura Y., Nakajima A., Kaya K.; *JOURNAL OF CHEMICAL PHYSICS* 2001, 115, 3657-3663

59 Molecular picture of excited states and fragmentation paths of the Na5F4 cluster.: Durand G., Spiegelmann F.; *EUROPEAN PHYSICAL JOURNAL D* 2001, **13**, 237-243

60 Reactions and thermochemistry of small transition metal cluster ions.: Armentrout P.; *ANNUAL REVIEW OF PHYSICAL CHEMISTRY* 2001, **52**, 423-461

61 Gold clusters (Au-N, 2 ¡= N ¡= 10) and their anions.: Hakkinen H., Landman U.; *PHYSICAL REVIEW B* 2000, **62**, R2287-R2290

62 A comparative study of the pseudo Jahn-Teller instability of linear molecules Ag-3 and I-3 and their positive and negative ions.: Gorinchoi N., Cimpoesu F., Bersuker I.; *JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM* 2000, **530**, 281-290

63 Ab initio study of the low-lying electronic states of Ag-3(-), Ag-3, and Ag-3(+): A coupled-cluster approach.: Yoon J., Kim K., Baeck K.; *JOURNAL OF CHEMICAL PHYSICS* 2000, **112**, 9335-9342

64 Theory for the ultrafast dynamics of excited clusters: interplay between elementary excitations and atomic structure.: Garcia M., Jeschke H., Grigorenko I., Bennemann K.; *APPLIED PHYSICS B-LASERS AND OPTICS* 2000, **71**, 361-371

65 Ab initio molecular dynamics study on Ag-n (n=4, 5, 6): Liu Z., Yim W., Tse J., Hafner J.; *EUROPEAN PHYSICAL JOURNAL D* 2000, **10**, 105-114

66 Time-resolved photodissociation and threshold collision-induced dissociation of anionic gold clusters.: Spasov V., Shi Y., Ervin K.; *CHEMICAL PHYSICS* 2000, **262**, 75-91

67 The influence of the anion vibrational temperature on the fs dynamics in a NeNePo experiment.: Hess H., Kwiet S., Socaciu L., Wolf S., Leisner T., Woste L.; *APPLIED PHYSICS B-LASERS AND OPTICS* 2000, **71**, 337-341

68 Electronic and atomic structure, and magnetism of transition-metal clusters.: Alonso J.; *CHEMICAL REVIEWS* 2000, **100**, 637-677

70 Relativistic coupled cluster calculations for neutral and singly charged Au-3 clusters.: Wesendrup R., Hunt T., Schwerdtfeger P.; *JOURNAL OF CHEMICAL PHYSICS* 2000, **112**, 9356-9362

71 Equilibrium geometries of the neutral and ionic clusters of Ag-7, Ag-8, and Ag-9 studied by intermediate neglect of differential overlap method.: Yu C., Sun H.; *BULLETIN OF THE KOREAN CHEMICAL SOCIETY* 2000, **21**, 1005-1010

72 A vibrationally resolved negative ion photoelectron spectrum of Nb-8.: Marcy T., Leopold D.; *INTERNATIONAL JOURNAL OF MASS SPECTROMETRY* 2000, **195**, 653-666

73 Absorption spectra of small silver clusters Ag-n (n Î¿= 3): Rabin I., Schulze W., Ertl G.; *CHEMICAL PHYSICS LETTERS* 1999, **312**, 394-398

75 Theoretical investigations of silver clusters and silver-ligand systems.: Srinivas S., Salian U., Jellinek J.; *METAL-LIGAND INTERACTIONS IN CHEMISTRY, PHYSICS AND BIOLOGY* 1999, 295-324

76 Two photon photoemission of deposited silver clusters.: Busolt U., Cottancin E., Rohr H., Socaciu L., Leisner T., Woste L.; *EUROPEAN PHYSICAL JOURNAL D* 1999, **9**, 523-527

78 The optical absorption spectrum and photofragmentation processes of silver tetramer ion.: Terasaki A., Minemoto S., Iseda M., Kondow T.; *EUROPEAN PHYSICAL JOURNAL D* 1999, **9**, 163-168

79 Spheroidal shell model for fission of doubly charged silver clusters.: Nakamura M.; *PHYSICAL REVIEW A* 1999, **60**, 2222-2229

81 Competitive fragmentation and electron loss kinetics of photoactivated silver cluster anions: Dissociation energies of Ag-n(-) (n=7-11).: Shi Y., Spasov V., Ervin K.; *JOURNAL OF CHEMICAL PHYSICS* 1999, 111, 938-949

82 Temperature and size dependence of the optical response of small Ag-n clusters.: Zabel T., Garcia M., Bennemann K.; *EUROPEAN PHYSICAL JOURNAL D* 1999, 7, 219-227

83 Measurement of the dissociation energies of anionic silver clusters (Ag-n(-), n = 2-11) by collision-induced dissociation.: Spasov V., Lee T., Maberry J., Ervin K.; *JOURNAL OF CHEMICAL PHYSICS* 1999, 111, 938-949

84 Time-resolved photofragmentation of stored silver clusters Ag-n(+), (n=8-21).: Hild U., Dietrich G., Kruckeberg S., Lindinger M., Schweikhard L., Walther C., Ziegler J.; *PHYSICAL REVIEW A* 1998, 57, 2786-2793

85 Energetic impact of size-selected metal cluster ions on graphite.: Carroll S., Hall S., Palmer R., Smith R.; *PHYSICAL REVIEW LETTERS* 1998, 81, 3715-3718

88 Molecular-dynamics computer simulation of silver aggregates (Ag-n; n = 3 to 13): Empirical many-body potential energy function calculation.: El-Bayyari Z.; *PHYSICA STATUS SOLIDI B-BASIC RESEARCH* 1998, 208, 339-347

89 Molecular dynamics study of the Ag-6 cluster using an ab initio many-body model potential.: Garzon I., Kaplan I., Santamaria R., Novaro O.; *JOURNAL OF CHEMICAL PHYSICS* 1998, 109, 2176-2184

91 The reactions of silver clusters with ethylene and ethylene oxide: Infrared and photoionization studies of Agn(C2H4)(m), Ag-n(C2H4O)(m) and their deuterated analogs.: Koretsky G., Knickelbein M.; *JOURNAL OF CHEMICAL PHYSICS* 1997, 107, 10555-10566

93 The structures and vibrational frequencies of small clusters of transition metal and main group elements - A gradient corrected density functional study.: Berces A.; *SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIO-MOLECULAR SPECTROSCOPY* 1997, 53, 1257-1272

95 Interpretation of photoelectron spectra in Cu-n(-) clusters including thermal and final-state effects: The case of Cu-7(-): Massobrio C., Pasquarello A., Car R.; *PHYSICAL REVIEW B* 1996, 54, 8913-8918

97 Many-dimensional potential surfaces: What they imply and how to think about them.: Berry R.; *INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY* 1996, 58, 657-670

100 Analysis of the ultrafast dynamics of the silver trimer upon photodetachment.: Jeschke H., Garcia M., Bennemann K.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1996, 29, L545-L549

101 Comparison of photoelectron spectra of Cu-n(-), Ag-n(-), and Na-n(-): Molecular orbitals versus electronic shells.: Gantefor G., Handschuh H., Moller H., Cha C., Bechthold P., Eberhardt W.; SURFACE REVIEW AND LETTERS 1996, 3, 399-403

102 Theory for the ultrafast structural response of optically excited small clusters: Time dependence of the ionization potential.: Jeschke H., Garcia M., Bennemann K.; PHYSICAL REVIEW A 1996, 54, R4601-R4604

103 Size effects and the role of nonadditive forces in neutral and anionic silver-cluster stability.: Kaplan I., Santamaria R., Novaro O.; SURFACE REVIEW AND LETTERS 1996, 3, 235-239

104 SPECTROSCOPY OF SIZE-SELECTED NEUTRAL CLUSTERS - FEMTOSECOND EVOLUTION OF NEUTRAL SILVER TRIMERS.: WOLF S., SOMMERER G., RUTZ S., SCHREIBER E., LEISNER T., WOSTEL.; PHYSICAL REVIEW LETTERS 1995, 74, 4177-4180

107 SOME RECENT APPLICATIONS OF AB-INITIO ELECTRONIC-STRUCTURE METHODS TO METAL, SEMIMETAL, AND MOLECULAR CLUSTERS.: BINNING R., ISHIKAWA Y.; STRUCTURAL CHEMISTRY 1995, 6, 229-241

113 GAS-PHASE STABILITIES OF SMALL ANIONS - THEORY AND EXPERIMENT IN COOPERATION.: KALCHER J., SAX A.; CHEMICAL REVIEWS 1994, 94, 2291-2318

1 Perturbative approximations to single and double spin flip equation of motion coupled cluster singles doubles methods.: Dutta A., Pal S., Ghosh D.; JOURNAL OF CHEMICAL PHYSICS 2013, 139, 124116
A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states.: Yost S., Kowalczyk T., Voorhis T.; JOURNAL OF CHEMICAL PHYSICS 2013, 139, 174104

An alternative approximation to state-specific multireference second-order Brillouin-Wigner perturbation theory: size-extensivity correction.: Aksu H.; THEORETICAL CHEMISTRY ACCOUNTS 2013, 132, 1325

A Lagrange multiplier approach for excited state properties through intermediate Hamiltonian formulation of Fock space multireference coupled-cluster theory.: Gupta J., Vaval N., Pal S.; JOURNAL OF CHEMICAL PHYSICS 2013, 139, 074108

Linearized Coupled Cluster Corrections to Antisymmetrized Product of Strongly Orthogonal Geminals: Role of Dispersive Interactions.: Zoboki T., Szabados A., Surjan P.; JOURNAL OF CHEMICAL THEORY AND COMPUTATION 2013, 9, 2602-2608

Thermodynamics of Tetravalent Thorium and Uranium Complexes from First-Principles Calculations.: Johnson D., Bhaskaran-Nair K., Bylaska E., Jong W.; JOURNAL OF PHYSICAL CHEMISTRY A 2013, 117, 4988-4995

Second-order Brillouin-Wigner perturbation theory: size-extensivity correction.: Aksu H.; THEORETICAL CHEMISTRY ACCOUNTS 2012, 131, 1285

The valence and Rydberg excited states of CH2: A theoretical exploration.: Li B., Wei Z., Wu H.; JOURNAL OF CHEMICAL PHYSICS 2012, 137, 216101

Note: Excited state studies of ozone using state-specific multireference coupled cluster methods.: Bhaskaran-Nair K., Kowsalski K.; JOURNAL OF CHEMICAL PHYSICS 2012, 137, 216101

Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.: Shen J., Piecuch P.; JOURNAL OF CHEMICAL THEORY AND COMPUTATION 2012, 8, 4968-4988

Combining active-space coupled-cluster methods with moment energy corrections via the CC(P;Q) methodology, with benchmark calculations for biradical transition states.: Shen J., Piecuch P.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 144104

23 Alternative single-reference coupled cluster approaches for multireference problems: The simpler, the better.: Evangelista F.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 224102

24 Charge-transfer separability and size-extensivity in the equation-of-motion coupled cluster method: EOM-CCx.: Musial M., Bartlett R.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 034106

27 DEVELOPMENT OF SAC-CI GENERAL-R METHOD FOR THEORETICAL FINE SPECTROSCOPY.: Ehara M., Nakatsuji H.; RECENT PROGRESS IN COUPLED CLUSTER METHODS: THEORY AND APPLICATIONS 2010, 79-112

28 Coupled cluster with singles, doubles, and partial higher-order excitations based on the corresponding orbitals: The formulation and test applications for bond breaking processes.: Xu E., Shen J., Kou Z., Li S.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 134110

29 Multireference Coupled-Cluster Methods for Ground and Low-Lying Excited States. A Benchmark Illustration on CH+ Potentials.: Li X., Paldus J.; INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2010, 110, 2734-2743

31 Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 074102

32 Force field of para- and metabenzyne diradicals: A multireference coupled-cluster study.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 114103

34 A worrisome failure of the CC2 coupled-cluster method when applied to ozone.: Pabst M., Koehn A., Gauss J., Stanton J.; CHEMICAL PHYSICS LETTERS 2010, 495, 135-140

37 Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2009, 131, 114103

40 Full potential energy curve for N-2 by the reduced multireference coupled-cluster method.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2008, 129, 054104
41 REDUCED MULTIREFERENCE COUPLED-CLUSTER METHOD AND ITS APPLICATION TO THE PYRIDINE DIRADICALS.: Li X., Paldus J.; JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2008, 7, 805-820

42 Method of Moments of Coupled Cluster Equations Employing Multi-Reference Perturbation Theory Wavefunctions: General Formalism, Diagrammatic Formulation, Implementation, and Benchmark Studies.: Lodriguito M., Piecuch P.; FRONTIERS IN QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS 2008, 67-174

44 Spectroscopic constants of single-bond diatomic molecules and singlet-triplet gaps of diradicals by the block-correlated coupled cluster theory.: Shen J., Fang T., Hua W., Li S.; JOURNAL OF PHYSICAL CHEMISTRY A 2008, 112, 4703-4709

47 Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: The formula for general active spaces and its applications for multibond breaking systems.: Fang T., Shen J., Li S.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 224107

48 Correction for triples in reduced multireference coupled-cluster approaches.: Paldus J., Li X.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2007, 72, 100-120

49 Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: The formulation and test applications for single bond breaking.: Fang T., Li S.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 204108

51 Coupling term derivation and general implementation of state-specific multireference coupled cluster theories.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 024102

53 Coupled-cluster and configuration-interaction approaches to quasidegeneracy.: Paldus J., Li X.; Recent Advances in the Theory of Chemical and Physical Systems 2006, 13-43

56 High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 154113

58 Tailored coupled cluster singles and doubles method applied to calculations on molecular structure and harmonic vibrational frequencies of ozone.: Hino O., Kinoshita T., Chan G., Bartlett R.; JOURNAL OF CHEMICAL PHYSICS 2006, 124, 114311

Can we avoid the intruder-state problems in the state-universal coupled-cluster approaches while preserving size extensivity? Paldus J., Li X.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2004, 69, 90-104

Simultaneous account of dynamic and nondynamic correlations based on complementarity of CI and CC approaches. Li X., Paldus J.; LOW-LYING POTENTIAL ENERGY SURFACES 2002, 10-30

Quantum chemistry in the 21st century (Special Topic Article). Barden C., Schaefer H.; PURE AND APPLIED CHEMISTRY 2000, 72, 1406-1423

Direct iterative solution of the generalized Bloch equation. II. A general formalism for many-electron systems. Meissner H., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2000, 113, 2594-2611

2. UV-visible absorption spectra of metallic clusters from TDDFT calculations: Rabilloud F.; *European Physical Journal D* 2013, 67, 18

5. Theoretical study of triatomic silver (Ag-3) and its ions with coupled-cluster methods and correlation-consistent basis sets: Huang M., Watts J.; *Physical Chemistry Chemical Physics* 2012, 14, 6849-6855

7. A comparative study on geometries, stabilities, and electronic properties between bimetallic AgnX (X=Au, Cu; n=1-8) and pure silver clusters: Li-Ping D., Xiao-Yu K., Peng S., Ya-Ru Z., Yan-Fang L.; *Chinese Physics B* 2012, 21, 043601

8. Optical and electronic properties of Cu doped Ag clusters: Ma W., Chen F.; *Journal of Alloys and Compounds* 2012, 541, 79-83

13. UV-visible absorption of small gold clusters in neon: Au-n (n=1-5 and 7-9): Lecoultre S., Rydlo A., Felix C., Buttet J., Gilb S., Harbich W.; *Journal of Chemical Physics* 2011, 134, 074302

15. Theoretical study on contribution of charge transfer effect to surface-enhanced Raman scattering spectra of pyridine adsorbed on Ag-n (n=2-8) clusters: Liu S., Li Y., Zhao X., Liu X., Chen M.; *Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy* 2011, 82, 205-212

17. Probing the magnetic and structural properties of the 3d, 4d, 5d impurities encapsulated in an icosahedral Ag-12 cage: Zhang M., Gu X., Zhang W., Zhao L., He L., Luo Y.; *Physica B-Condensed Matter* 2010, 405, 642-648

18. Assessment of the accuracy of long-range corrected functionals for describing the electronic and optical properties of silver clusters: Silverstein D., Jensen L.; *Journal of Chemical Physics* 2010, 132, 194302

19. The Electronic Structure of Silver Clusters: Lei Y., Zhao G., Zeng Z.; *Journal of Nanoscience and Nanotechnology* 2010, 10, 5483-5489
20 Aromaticity/Antiaromaticity in “Bare” and “Ligand-Stabilized” Rings of Metal Atoms.: Tsipis C.; METAL-METAL BONDING 2010, 217-274

21 The properties of small Ag clusters bound to DNA bases.: Soto-Verdugo V., Metiu H., Gwinn E.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 195102

22 Unveiling the Nature of Binding Interactions of Acetylene and Ethylene with Triangular Coinage Metal Clusters: A DFT Computational Study.: Tsipis A.; ORGANOMETALLICS 2010, 29, 354-363

25 DFT study of adsorption site effect on surface-enhanced Raman scattering of neutral and charged pyridine-Ag-4 complexes.: Liu S., Zhao X., Li Y., Chen M., Sun M.; SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009, 73, 382-387

26 Optical absorption spectra of Ag(11) isomers.: Martinez J., Fernandez E.; EUROPEAN PHYSICAL JOURNAL D 2009, 52, 199-202

27 Photoexcitation and Optical Absorption.: Blackman J.; METALLIC NANOPARTICLES 2009, 175-229

30 Aggregation in thin-film silver: Induced by chlorine and inhibited by alloying with two dopants.: Koike K., Shimada K., Fukuda S.; CORROSION SCIENCE 2009, 51, 2557-2564

31 Electronic structure methods for studying surface-enhanced Raman scattering.: Jensen L., Aikens C., Schatz G.; CHEMICAL SOCIETY REVIEWS 2008, 37, 1061-1073

35 DFT study of electronic structure and geometry of anionic silver clusters Ag-n(-) (n = 11, 12, 17): Matulis V., Mazheika A., Ivashkevich O.; JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM 2008, 850, 61-66

37 Structural evolution of Ag-n(v)(v = +/- 1, 0; n=3-14) clusters using genetic algorithm and density functional theory method.: Zhang H., Tian D.; COMPUTATIONAL MATERIALS SCIENCE 2008, 42, 462-469

38 Efficient trapping of silver cations in a rare gas matrix: Ag-3(+) in argon.: Lecoultre S., Rydlo A., Felix C.; JOURNAL OF CHEMICAL PHYSICS 2007, 126, 204507

39 Optical spectra of Cu, Ag, and Au monomers and dimers at regular sites and oxygen vacancies of the MgO(001) surface. A systematic time-dependent density functional study using embedded cluster Models.: Bosko S., Moskaleva L., Matveev A., Rosch N.; JOURNAL OF PHYSICAL CHEMISTRY A 2007, 111, 6870-6880

40 Photoelectron studies of neutral Ag-3 in helium droplets.: Przystawik A., Radcliffe P., Diederich T., Doeppner T., Tiggesbaumker J., Meiwes-Broer K.; JOURNAL OF CHEMICAL PHYSICS 2007, 126, 184306
41 Ag nanocluster formation using a cytosine oligonucleotide template.: Ritchie C., Johnsen K., Kiser J., Antoku Y., Dickson R., Petty J.; JOURNAL OF PHYSICAL CHEMISTRY C 2007, 111, 175-181

42 Size-dependence of the enhanced Raman scattering of pyridine adsorbed on Ag-n (n=2-8, 20) clusters.: Jensen L., Zhao L., Schatz G.; JOURNAL OF PHYSICAL CHEMISTRY C 2007, 111, 4756-4764

43 Structural, energetic, and vibrational properties of NOx adsorption on Ag-n, n=1-8.: Gronbeck H., Hellman A., Gavrin A.; JOURNAL OF PHYSICAL CHEMISTRY A 2007, 111, 6062-6067

44 Dynamics of clusters initiated by photon and surface impact.: Terasaki A.; JOURNAL OF PHYSICAL CHEMISTRY A 2007, 111, 7671-7689

46 Formation and properties of metal clusters isolated in helium droplets.: Tiggesbaeumker J., Stienkemeier F.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2007, 9, 4748-4770

48 Absorption spectra of small silver clusters Ag-n (n=4, 6, 8): A TDDFT study.: Zhao G., Lei Y., Zeng Z.; CHEMICAL PHYSICS 2006, 327, 261-268

50 Is the uniform electron gas limit important for small Ag clusters? Assessment of different density functionals for Ag-n (n := 4): Zhao S., Li Z., Wang W., Liu Z., Fan K., Xie Y., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2006, 124, 184102

52 The spectroscopy of copper and silver monohalides: what modern quantum chemistry can and cannot do.: Ramirez-Solis A.; THEORETICAL CHEMISTRY ACCOUNTS 2006, 116, 641-654

53 Ab initio study on the kinetics and mechanisms of the formation of Ag-n (n=2-6) clusters.: Tian Z., Tian Y., Wei W., He T., Chen D., Liu F.; CHEMICAL PHYSICS LETTERS 2006, 420, 550-555

55 Experimental structure determination of silver cluster ions (Ag-n(+)n=19-79): Blom M., Schooss D., Stairs J., Kappe M.; JOURNAL OF CHEMICAL PHYSICS 2006, 124, 244308

56 Reactions of mixed silver-gold cluster cations AgmAu(n)+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations.: Neumaier M., Weigend F., Hampe O., Kappe M.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 104308

58 First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties.: Yang M., Jackson K., Jellinek J.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 144308

59 Geometrical and electronic structures of AumAgn (2 := m plus n := 8): Zhao G., Zeng Z.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 014303

60 Structure determination of gaseous metal and semi-metal cluster ions by ion mobility spectrometry.: Weis P.; INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2005, 245, 1-13

62 Size dependence of the static polarizabilities and absorption spectra of Ag-n (n=2-8) clusters.: Idrobo J., Ogut S., Jellinek J.; PHYSICAL REVIEW B 2005, 72, 085445

63 Experimental and theoretical studies of the interaction of silver cluster cations Ag-n(+): (n=1-4) with ethylene.: Tian Z., Tang Z.; RAPID COMMUNICATIONS IN MASS SPECTROMETRY 2005, 19, 2893-2904

64 Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity.: Hakkinen H., Moseler M., Kostko O., Morgner N., Hoffmann M., Issendorff B.; PHYSICAL REVIEW LETTERS 2004, 93, 093401

67 Trends in the structure and bonding of noble metal clusters.: Fernandez E., Soler J., Garzon I., Balbas L.; PHYSICAL REVIEW B 2004, 70, 165403

69 On the absorption spectrum and stability of Ag-3(2+) in aqueous solution.: Dubois V., Seijo M., Archirel P.; CHEMICAL PHYSICS LETTERS 2004, 389, 150-154

72 Single-molecule LEDs from nanoscale electroluminescent junctions.: Lee T., Dickson R.; JOURNAL OF PHYSICAL CHEMISTRY B 2003, 107, 7387-7390

74 Ag-3 Born-Oppenheimer potential hypersurfaces.: Shen Y., BelBruno J.; JOURNAL OF CHEMICAL PHYSICS 2003, 118, 9241-9246

75 DFIF study of electronic structure and geometry of neutral and anionic silver clusters.: Matulis V., Ivashkevich O., Gurin V.; JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM 2003, 664, 291-308

76 A correlation study of small silver clusters.: Huda M., Ray A.; EUROPEAN PHYSICAL JOURNAL D 2003, 22, 217-227

77 Electronic structures and magic numbers of small silver clusters: A many-body perturbation-theoretic study.: Huda M., Ray A.; PHYSICAL REVIEW A 2003, 67, 013201

78 Distance dependence of the interaction between single atoms: Gold dimers on NiAl(110): Nilius N., Wallis T., Persson M., Ho W.; PHYSICAL REVIEW LETTERS 2003, 90, 196103

79 Discrete two-terminal single nanocluster quantum optoelectronic logic operations at room temperature.: Lee T., Dickson R.; PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2003, 100, 3043-3046

80 Bonding interaction, low-lying states and excited charge-transfer states of pyridine-metal clusters: Pyridine-M-n (M=Cu, Ag, Au; n=2-4): Wu D., Hayashi M., Chang C., Liang K., Lin S.; JOURNAL OF CHEMICAL PHYSICS 2003, 118, 4073-4085

82 The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations.: Furche F., Ahlrichs R., Weis P., Jacob C., Gilb S., Bierweiler T., Kappe M.; *JOURNAL OF CHEMICAL PHYSICS* 2002, **117**, 6982-6990

83 Structures of small silver cluster cations (Ag-n(+), n ≤ 12): ion mobility measurements versus density functional and MP2 calculations.: Weis P., Bierweiler T., Gilb S., Kappe M.; *CHEMICAL PHYSICS LETTERS* 2002, **355**, 355-364

84 Strongly enhanced field-dependent single-molecule electroluminescence.: Lee T., Gonzalez J., Dickson R.; *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA* 2002, **99**, 10272-10275

85 Monte Carlo simulations of Ag2+ and Ag-2 in aqueous solution.: Dubois V., Archirel P.; *JOURNAL OF PHYSICAL CHEMISTRY B* 2002, **106**, 12022-12030

86 Ab initio study of silver bromide AgnBrp(+) clusters (n = 6, p = n, n-1).: Rabilloud F., Spiegelman F., L’Hermite J., Labastie P.; *JOURNAL OF CHEMICAL PHYSICS* 2001, **114**, 289-305

88 Conformers of Al-13, Al12M, and Al13M (M=Cu, Ag, and Au) clusters and their energetics.: Zope R., Baruah T.; *PHYSICAL REVIEW A* 2001, **64**, 053202

90 Absorption and fluorescence spectra of Ar-matrix-isolated Ag-3 clusters.: Rabin I., Schulze W., Ertl G., Felix C., Sieber C., Harbich W., Buttet J.; *CHEMICAL PHYSICS LETTERS* 1999, **312**, 394-398

91 Fluorescence and excitation spectra of Ag-4 in an argon matrix.: Felix C., Sieber C., Harbich W., Buttet J., Rabin I., Schulze W., Ertl G.; *CHEMICAL PHYSICS LETTERS* 1999, **313**, 105-109

92 Ab initio calculations of structural and electronic properties of small silver bromide clusters.: Rabilloud F., Spiegelmann F., Heully J.; *JOURNAL OF CHEMICAL PHYSICS* 1999, **111**, 8925-8933

1 Algebraic connectivity analysis in molecular electronic structure theory II: total exponential formulation of second-quantised correlated methods.: Lyakh D., Bartlett R.; *MOLECULAR PHYSICS* 2014, **112**, 213-260

2 Restricted active space spin-flip (RAS-SF) with arbitrary number of spin-flips.: Bell F., Zimmerman P., Casanova D., Goldey M., Head-Gordon M.; *PHYSICAL CHEMISTRY CHEMICAL PHYSICS* 2013, **15**, 358-366

3 Search of truncation of (N-1) electron basis containing full connected triple excitations in computing main and satellite ionization potentials via fock space coupled cluster approach.: Adhikari K., Chattopadhyay S., De B., Sharma A., Nath R., Sinha D.; *JOURNAL OF COMPUTATIONAL CHEMISTRY* 2013, **34**, 1291-1310

5 Bridging single and multireference coupled cluster theories with universal state selective formalism.: Bhaskaran-Nair K., Kowalski K.; *JOURNAL OF CHEMICAL PHYSICS* 2013, **138**, 204114

6 Biorthogonal moment expansions in coupled-cluster theory: Review of key concepts and merging the renormalized and active-space coupled-cluster methods.: Shen J., Piecuch P.; *CHEMICAL PHYSICS* 2012, **401**, 180-202

7 Inactive excitations in Mukherjee’s state-specific multireference coupled cluster theory treated with internal contraction: Development and applications.: Das S., Pathak S., Datta D., Mukherjee D.; *JOURNAL OF CHEMICAL PHYSICS* 2012, **136**, 164104

8 CASPT2 and CCSD(T) calculations of dipole moments and polarizabilities of acetone in excited states.: Pasteka L., Melichercik M., Neogrady P., Urban M.; *MOLECULAR PHYSICS* 2012, **110**, 2219-2237

10 Superior performance of Mukherjee’s state-specific multi-reference coupled-cluster theory at the singles and doubles truncation scheme with localized active orbitals.: Das S., Kallay M., Mukherjee D.; *CHEMICAL PHYSICS* 2012, **392**, 83-89

11 Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.: Shen J., Piecuch P.; *JOURNAL OF CHEMICAL THEORY AND COMPUTATION* 2012, **8**, 4968-4988

13 Combining active-space coupled-cluster methods with moment energy corrections via the CC(P;Q) methodology, with benchmark calculations for biradical transition states.: Shen J., Piecuch P.; *JOURNAL OF CHEMICAL PHYSICS* 2012, **136**, 144104

14 Single reference coupled cluster calculations for weakly bound alkaline-earth metal dimers in the ground state: a useful perturbative scheme for an iterative triples correction.: Mahapatra U., Chattopadhyay S.; *MOLECULAR PHYSICS* 2012, **110**, 75-83

16 A universal state-selective approach to multireference coupled-cluster non-iterative corrections.: Kowalski K.; *JOURNAL OF CHEMICAL PHYSICS* 2011, **134**, 194107

18 Alternative single-reference coupled cluster approaches for multireference problems: The simpler, the better.: Evangelista F.; *JOURNAL OF CHEMICAL PHYSICS* 2011, **134**, 224102

19 Ab Initio Multireference Investigation of Disjoint Diradicals: Singlet versus Triplet Ground States.: Chattopadhyay S., Chaudhuri R., Mahapatra U.; *CHEMPHYSCHEM* 2011, **12**, 2791-2797
20 Application of the uncoupled state-specific multireference coupled cluster method to a weakly bonded system: exploring the ground state Be-2.: Mahapatra U., Chattopadhyay S.; *Journal of Physics B: Atomic Molecular and Optical Physics* 2011, **44**, 105102

21 Charge-transfer separability and size-extensivity in the equation-of-motion coupled cluster method: EOM-CCx.: Musial M., Bartlett R.; *Journal of Chemical Physics* 2011, **134**, 034106

22 An orbital-invariant internally contracted multireference coupled cluster approach.: Evangelista F., Gauss J.; *Journal of Chemical Physics* 2011, **134**, 114102

24 Coupled cluster with singles, doubles, and partial higher-order excitations based on the corresponding orbitals: The formulation and test applications for bond breaking processes.: Xu E., Shen J., Kou Z., Li S.; *Journal of Chemical Physics* 2010, **132**, 134110

25 Molecular applications of analytical gradient approach for the improved virtual orbital-complete active space configuration interaction method.: Chaudhuri R., Chattopadhyay S., Mahapatra U., Freed K.; *Journal of Chemical Physics* 2010, **132**, 034105

27 On our efforts constructing a proper multireference coupled-cluster method.: Szalay P.; *Molecular Physics* 2010, **108**, 3055-3065

29 Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; *Journal of Chemical Physics* 2010, **133**, 074102

31 Force field of para- and metabenzyne diradicals: A multireference coupled-cluster study.: Li X., Paldus J.; *Journal of Chemical Physics* 2010, **132**, 114103

32 Multireference coupled-cluster Ansatz.: Jeziorski B.; *Molecular Physics* 2010, **108**, 3043-3054

33 Perturbative triples corrections in state-specific multireference coupled cluster theory.: Evangelista F., Prochnow E., Gauss J., Schaefer H.; *Journal of Chemical Physics* 2010, **132**, 074107

34 Cholesky decomposition within local multireference singles and doubles configuration interaction.: Chwee T., Carter E.; *Journal of Chemical Physics* 2010, **132**, 074104

37 Active-space coupled-cluster methods.: Piecuch P.; *Molecular Physics* 2010, **108**, 2987-3015

38 Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.: Li X., Paldus J.; *Journal of Chemical Physics* 2009, **131**, 114103

40 Performance of Block Correlated Coupled Cluster Method with the CASSCF Reference Function for Carbon-Carbon Bond Breaking in Hydrocarbons.: Shen J., Fang T., Li S.; ADVANCES IN THE THEORY OF ATOMIC AND MOLECULAR SYSTEMS: CONCEPTUAL AND COMPUTATIONAL ADVANCES IN QUANTUM CHEMISTRY 2009, 241-255

41 Analytic gradients for the state-specific multireference coupled cluster singles and doubles model.: Prochnow E., Evangelista F., Schaefer H., Allen W., Gauss J.; JOURNAL OF CHEMICAL PHYSICS 2009, 131, 064109

44 Connection Between a Few Jeziorski-Monkhorst Ansatz-Based Methods.: Kong L.; INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2009, 109, 441-447

46 A multi-reference coupled-cluster study on the potential energy surface of N-2 including ground and excited states: spin projections and wavefunction overlaps.: Hanrath M., Engels-Putzka A.; THEORETICAL CHEMISTRY ACCOUNTS 2009, 122, 197-206

48 Full potential energy curve for N-2 by the reduced multireference coupled-cluster method.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2008, 129, 054104

49 REDUCED MULTIREFERENCE COUPLED-CLUSTER METHOD AND ITS APPLICATION TO THE PYRIDyne DIRADICALS.: Li X., Paldus J.; JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2008, 7, 805-820

50 Molecular applications of state-specific multireference perturbation theory to HF, H(2)O, H(2)S, C(2), and N(2) molecules.: Mahapatra U., Chattopadhyay S., Chaudhuri R.; JOURNAL OF CHEMICAL PHYSICS 2008, 129, 024108

53 Multireference averaged quadratic coupled-cluster (MR-AQCC) method based on the functional of the total energy.: Szalay P.; CHEMICAL PHYSICS 2008, 349, 121-125

54 Spectroscopic constants of single-bond diatomic molecules and singlet-triplet gaps of diradicals by the block-correlated coupled cluster theory.: Shen J., Fang T., Hua W., Li S.; JOURNAL OF PHYSICAL CHEMISTRY A 2008, 112, 4703-4709

57 Development and pilot molecular applications of the uncoupled state-specific MRCC (UC-SS-MRCC) theory.: Das S., Datta D., Maitra R., Mukherjee D.; CHEMICAL PHYSICS 2008, 349, 115-120
Higher excitations for an exponential multireference wavefunction Ansatz and single-reference based multireference coupled cluster Ansatz: Application to model systems H(4), P(4), and BeH(2).: Hanrath M.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 154118

Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: The formula for general active spaces and its applications for multibond breaking systems.: Fang T., Shen J., Li S.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 224107

Correction for triples in reduced multireference coupled-cluster approaches.: Paldus J., Li X.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2007, 72, 100-120

Coupling term derivation and general implementation of state-specific multireference coupled cluster theories.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 024102

Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: The formulation and test applications for single bond breaking.: Fang T., Li S.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 204108

Applications of linear response theories to compute the low-lying potential energy surfaces: state-specific MRCEPA-based approach.: Chattopadhyay S., Mukhopadhyay D.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2007, 40, 1787-1799

High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 154113
Coupled-cluster and configuration-interaction approaches to quasidegeneracy.: Paldus J., Li X.; Recent Advances in the Theory of Chemical and Physical Systems 2006, 13-43

An exponential multireference wave-function Ansatz.: Hanrath M.; JOURNAL OF CHEMICAL PHYSICS 2005, 123, 084102

Anchoring the torsional potential of biphenyl at the ab initio level: The role of basis set versus correlation effects.: Sancho-Garcia J., Cornil J.; JOURNAL OF CHEMICAL PHYSICS 2005, 121, 7103-7109

Applications of size-consistent state-specific multi-reference coupled cluster (SS-MRCC) theory to study the potential energy curves of some interesting molecular systems.: Chattopadhyay S., Ghosh P., Mahapatra U.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2004, 37, 495-510

Paradigm pre-reactive van der Waals complexes: X-HX and X-H-2 (X = F, Cl, Br).: Klos J., Szczesniak M., Chalasinski G.; INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY 2004, 23, 541-571

Can we avoid the intruder-state problems in the state-universal coupled-cluster approaches while preserving size extensivity?: Paldus J., Li X.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2004, 69, 90-104

Insight into the vertical detachment energy oscillation of NanC60- clusters.: Wang H., Li S., Xiu S., Gong L., Chen G., Mizuseki H., Kawazoe Y.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 174314

Geometric rearrangement of adsorbate driven by the charge transfer.: Pavlyukh Y., Berakdar J., Huebner W.; PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 2010, 247, 1056-1062

5 Electrostatic interaction schemes for evaluating the polarizability of silicon clusters.: Guillaume M., Champagne B., Begue D., Pouchan C.; *Journal of Chemical Physics* 2009, **130**, 134715

6 Photoexcitation and Optical Absorption.: Blackman J.; *Metallic Nanoparticles* 2009, 175-229

7 Structural and electronic properties of oxidized sodium clusters: A combined photoelectron and density functional study.: Majer K., Lei M., Hock C., Issendorff B., Aguado A.; *Journal of Chemical Physics* 2009, **131**, 204313

11 Electronically excited states and visible region photodissociation spectroscopy of Au(m)(+)center dot Ar(n) clusters (m=7-9): Molecular dimensionality transition?: Gloess A., Schneider H., Weber J., Kappes M.; *Journal of Chemical Physics* 2008, **128**, 114312

12 Embedded metal cluster in strong laser fields.: Fehrer F., Dinh P., Reinhard P., Suraud E.; *Computational Materials Science* 2008, **42**, 203-211

13 Solvation of Na(2)(+) in Ar(n) clusters. I. Structures and spectroscopic properties.: Douady J., Jacquet E., Giglio E., Zamuttini D., Gervais B.; *Journal of Chemical Physics* 2008, **129**, 184303

14 Configuration interaction approach for the computation of the electronic self-energy.: Pavlyukh Y., Huebner W.; *Physical Review B* 2007, **75**, 205129

15 Semi-classical description of small Na clusters structure and dynamics.: Legrand C., Suraud E., Reinhard P.; *Journal of Physics B-Atomic Molecular and Optical Physics* 2006, **39**, 2481-2492

16 Spectroscopic properties of Na-3(+) in bulk and on the surface of Ar droplets.: Douady J., Gervais B., Giglio E., Ipatov A., Jacquet E.; *Journal of Molecular Structure* 2006, **786**, 118-122

17 Structures and charge distributions of cationic and neutral LinXm (X = Na and K).: Jiang Z., Lee K., Li S., Chu S.; *International Journal of Mass Spectrometry* 2006, **253**, 104-111

18 Electronic and Optical Properties of Simple Metal Clusters.: Alonso J.; *Structure and Properties of Atomic Nanoclusters* 2005, 97-152

19 Melting and Fragmentation of Metal Clusters.: Alonso J.; *Structure and Properties of Atomic Nanoclusters* 2005, 153-204

20 Theoretical investigation of nonadiabatic and internal temperature effects on the collision-induced multifragmentation dynamics of Na-5(+) cluster ions.: Sizun M., Aguillon F., Sidis V.; *Journal of Chemical Physics* 2005, **123**, 074331

30 The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations.: Furche F., Ahlrichs R., Weis P., Jacob C., Gilb S., Bierweiler T., Kappes M.; JOURNAL OF CHEMICAL PHYSICS 2002, 117, 6982-6990

31 Quantum fluid dynamics from density-functional theory.: Kummel S., Brack M.; PHYSICAL REVIEW A 2001, 64, art. no.-022506

32 Atomic clusters as a branch of nuclear physics.: Frauendorf S., Guet C.; ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE 2001, 51, 219-259

33 Molecular picture of excited states and fragmentation paths of the Na5F4 cluster.: Durand G., Spiegelmann F.; EUROPEAN PHYSICAL JOURNAL D 2001, 13, 237-243

35 Photoabsorption spectra of Na-n(+) clusters: Thermal line-broadening mechanisms.: Moseler M., Hakkinen H., Landman U.; PHYSICAL REVIEW LETTERS 2001, 87, 053401

37 Collectivity in the optical response of small metal clusters.: Kummel S., Andrae K., Reinhard P.; APPLIED PHYSICS B-LASERS AND OPTICS 2001, 73, 299-297

38 Dynamics of the multifragmentation of Na-n(+) clusters (4 ¡= n ¡= 9).: Sizun M., Aguillon F.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2001, 3, 5226-5229

40 Reaction dynamics of metallic clusters colliding with atoms.: Saalmann U.; ADVANCES IN QUANTUM CHEMISTRY, VOL 40: NEW PERSPECTIVES IN QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, PT 2 2001, 305-322

42 Thermal expansion in small metal clusters and its impact on the electric polarizability.: Kummel S., Akola J., Manninen M.; PHYSICAL REVIEW LETTERS 2000, 84, 3827-3830

43 Critical cluster size of metallic Cr and Mo nanoclusters.: Huh S., Kim H., Park J., Lee G.; PHYSICAL REVIEW B 2000, 62, 2937-2943

44 Charge transfer and fragmentation in cluster-atom collisions.: Knospe O., Jellinek J., Saalmann U., Schmidt R.; PHYSICAL REVIEW A 2000, 61, 022715
35 Three-dimensional global optimization of Na-n(+) sodium clusters in the range n := 40.: Calvo F., Tran S., Blundell S., Guet C., Spiegelmann F.; PHYSICAL REVIEW B 2000, 62, 10394-10404

36 Odd-even alternation of global hardnesses in the Na(n) (n=2-9) clusters.: Mineva T., Russo N., Toscano M.; INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2000, 80, 105-109

37 Ionic and electronic structure of sodium clusters up to N=59.: Kummel S., Brack M., Reinhard P.; PHYSICAL REVIEW B 2000, 62, 7602-7613

39 Structure and optic response of the Na-9(+) and Na-55(+) clusters.: Kummel S., Reinhard P., Brack M.; EUROPEAN PHYSICAL JOURNAL D 1999, 9, 149-152

40 Temperature and size dependence of the optical response of small Ag-n clusters.: Zabel T., Garcia M., Bennemann K.; EUROPEAN PHYSICAL JOURNAL D 1999, 7, 219-227

42 A plane-wave pseudopotential description of charged clusters.: Nogueira F., Martins J., Fiolhais C.; EUROPEAN PHYSICAL JOURNAL D 1999, 9, 229-233

43 Reduced oscillator strength in the lithium atom, clusters, and the bulk.: Ellert C., Schmidt M., Schmitt C., Haberland H., Guet C.; PHYSICAL REVIEW B 1999, 59, R7841-R7844

44 Temperature dependence of the optical response of sodium cluster ions Na-n(+), with 4 := n := 16.: Schmidt M., Ellert C., Kronmüller W., Haberland H.; PHYSICAL REVIEW B 1999, 59, 10970-10979

46 Optical spectra and their moments for sodium clusters, Na-n(+), with 3 := n := 64.: Schmidt M., Haberland H.; EUROPEAN PHYSICAL JOURNAL D 1999, 6, 109-118

47 The optical absorption spectrum and photofragmentation processes of silver tetramer ion.: Terasaki A., Minemoto S., Iseda M., Kondow T.; EUROPEAN PHYSICAL JOURNAL D 1999, 9, 163-168

48 Comment on “Shape phase transitions in the absorption spectra of atomic clusters”: Kresin V.; PHYSICAL REVIEW LETTERS 1998, 81, 5702

50 Ionic structure and photoabsorption in medium-sized sodium clusters.: Kummel S., Brack M., Reinhard P.; PHYSICAL REVIEW B 1998, 58, R1774-R1777

51 Isomers and transition states of the Na-4(+) clusters. Ab initio studies of geometries and absorption spectra.: Mishima K., Yamashita K., Bandrauk A.; JOURNAL OF PHYSICAL CHEMISTRY A 1998, 102, 3157-3161

53 The physical nature of very, very small particles and its impact on their behaviour.: Preining O.; JOURNAL OF AEROSOL SCIENCE 1998, 29, 481-495

7 Sancho-Garcia J., Pittner J., Carsky P., Hubac I., Multireference coupled-cluster calculations on the energy of activation in the automerization of cyclobutadiene: Assessment of the state-specific multireference Brillouin-Wigner theory.; *Journal of Chemical Physics* 2000, **112**, 8785-8788 \(\text{IF}_{2012} = 3.164 (78 \text{ citac}/35 \text{ bez autocitac})\)

1 Linearized Coupled Cluster Corrections to Antisymmetrized Product of Strongly Orthogonal Geminals: Role of Dispersive Interactions.: Zoboki T., Szabados A., Surjan P.; *Journal of Chemical Theory and Computation* 2013, **9**, 2602-2608

2 Perturbative approximations to single and double spin flip equation of motion coupled cluster singles doubles methods.: Dutta A., Pal S., Ghosh D.; *Journal of Chemical Physics* 2013, **139**, 124116

3 A fusion of the closed-shell coupled cluster singles and doubles method and valence-bond theory for bond breaking.: Small D., Head-Gordon M.; *Journal of Chemical Physics* 2012, **137**, 114103

4 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattoppadhyay S.; *Journal of Computational Chemistry* 2012, **33**, 1285-1303

5 De-perturbative corrections for charge-stabilized double ionization potential equation-of-motion coupled-cluster method.: Kus T., Krylov A.; *Journal of Chemical Physics* 2012, **136**, 244109

7 Evaluation of the performance of single root multireference coupled cluster method for ground and excited states, and its application to geometry optimization.: Mahapatra U., Chattoppadhyay S.; *Journal of Chemical Physics* 2011, **134**, 044113

9 On the actual nature of the anti-ferromagnetism shown by unrestricted calculations on conjugated hydrocarbon rings.: San-Fabian E., Moscardo F.; *European Physical Journal D* 2011, **64**, 239-248

12 Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattoppadhyay S.; *Journal of Chemical Physics* 2010, **133**, 074102

13 Ground state potential energy surface between cyclobutadiene and tetrahedrane looked down from S-1/S-0 conical intersections.: Sumita M., Saito K.; *Tetrahedron* 2010, **66**, 5212-5217

14 Tetra-radical and ionic S-1/S-0 conical intersections of cyclobutadiene.: Sumita M., Saito K.; *Chemical Physics* 2010, **371**, 30-35

16 The Substitution Effect on Heavy Versions of Cyclobutadiene.: Nazari F., Doroodi Z.; *International Journal of Quantum Chemistry* 2010, **110**, 1514-1528

20 Correction for triples in reduced multireference coupled-cluster approaches.: Paldus J., Li X.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2007, 72, 100-120

22 Coupled-cluster and configuration-interaction approaches to quasidegeneracy.: Paldus J., Li X.;Recent Advances in the Theory of Chemical and Physical Systems 2006, 13-43

23 Automerization reaction of cyclobutadiene and its barrier height: An ab initio benchmark multireference average-quadratic coupled cluster study.: Eckert-Maksic M., Vazdar M., Barbatti M., Lischka H., Maksic Z.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 064310

28 Can we avoid the intruder-state problems in the state-universal coupled-cluster approaches while preserving size extensivity?: Paldus J., Li X.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2004, 69, 90-104

30 Optimized quasiparticle energies in many-body perturbation theory.: Surjan P., Kohalmi D., Szabados A.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2003, 68, 331-339

31 Analysis of the multireference state-universal coupled-cluster Ansatz.: Paldus J., Li X.; JOURNAL OF CHEMICAL PHYSICS 2003, 118, 6769-6783

33 Role of molecular distortions in the spin-orbit coupling between the singlet and triplet states of the 4 pi electron systems C4H4, C5H5+, and C3H3-.: Shiota Y., Kondo M., Yoshizawa K.; JOURNAL OF CHEMICAL PHYSICS 2001, 115, 9243-9254

34 On the correlation energy features in planar heteroatomic molecular systems.: Smith D., Baric D., Maksic Z.; JOURNAL OF CHEMICAL PHYSICS 2001, 115, 3474-3483

1 Optimal White Light Control of the Negative to Neutral to Positive Charge Transition (NeNePo) in the Electronic Manifold of the Silver Trimer.: Schmidt B., Gause O., Hagemann F., Li S., Unrau W., Woeste L., Siebert T.; JOURNAL OF PHYSICAL CHEMISTRY A 2012, 116, 11459-11466

2 Response of solid Ne upon photoexcitation of a NO impurity: A quantum dynamics study.: Uranga-Pina L., Meier C., Rubayo-Soneira J.; JOURNAL OF CHEMICAL PHYSICS 2011, 135, 164504

3 Photoelectron studies of neutral Ag-3 in helium droplets.: Przystawik A., Radcliffe P., Diederich T., Doeppner T., Tigggesbaeumker J., Meiwes-Broer K.; JOURNAL OF CHEMICAL PHYSICS 2007, 126, 184306

4 Dissociation channels of silver bromide cluster Ag2Br, silver cluster Ag-3 and their ions studied by using alkali metal target.: Nagao H., Awazu K., Hayakawa S., Iwamoto K., Toyoda M., Ichihara T.; EUROPEAN PHYSICAL JOURNAL D 2007, 45, 279-287

5 Far-infrared spectroscopy of small neutral silver clusters.: Fielicke A., Rabin I., Meijer G.; JOURNAL OF PHYSICAL CHEMISTRY A 2006, 110, 8060-8063

6 Ab initio study on the kinetics and mechanisms of the formation of Ag-n (n=2-6) clusters.: Tian Z., Tian Y., Wei W., He T., Chen D., Liu F.; CHEMICAL PHYSICS LETTERS 2006, 420, 550-555

7 Time-resolved fission in metal clusters.: Dinh P., Reinhard P., Suraud E.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2005, 38, 1637-1643

9 Dynamics of orientations in an ensemble of Na-7(+) clusters.: Reinhard P., Suraud E.; EUROPEAN PHYSICAL JOURNAL D 2005, 34, 145-150

10 Crossed beam pump and probe dynamics in metal clusters.: Andrae K., Reinhard P., Suraud E.; PHYSICAL REVIEW LETTERS 2004, 92, 173402

13 Collisions transfer coherence.: Bargheer M., Guhr M., Schwentner N.; ISRAEL JOURNAL OF CHEMISTRY 2004, 44, 9-17

14 Femtosecond study of Cu(H2O) dynamics.: Muntean F., Taylor M., McCoy A., Lineberger W.; JOURNAL OF CHEMICAL PHYSICS 2004, 121, 5676-5687

15 Bonding interaction, low-lying states and excited charge-transfer states of pyridine-metal clusters: Pyridine-M-n (M=Cu, Ag, Au; n=2-4): Wu D., Hayashi M., Chang C., Liang K., Lin S.; JOURNAL OF CHEMICAL PHYSICS 2003, 118, 4073-4085

16 Time-resolved photoelectron spectroscopy of molecular dissociation: Classical trajectory versus quantum wave-packet calculations (vol 4, pg 5014, 2002).: Meier C., Engel V.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2002, 4, 5921

18 Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets.: Horenko I., Salzmann C., Schmidt B., Schutte C.; JOURNAL OF CHEMICAL PHYSICS 2002, 117, 11075-11088

28 The relaxation from linear to triangular Ag-3 probed by femtosecond resonant two-photon ionization.: Leisner T., Vajda S., Wolf S., Woste L., Berry R.; JOURNAL OF CHEMICAL PHYSICS 1999, 111, 1017-1021

1 Structure and energetics of Li/Na, Li/K, and K/Na bimetallic hexamers.: Mohajeri A., Mahmoodinia M.; JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2013, 10, 1229-1237

2 PRODUCTION OF HETEROGENEOUS SUPERALKALI CLUSTERS LinF (n=2-6) BY KNUDSEN - CELL MASS SPECTROMETRY.: Dustebek J., Velickovic S., Veljkovic F., Veljkovic M.; DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES 2012, 7, 1365-1372

3 Formation of positive cluster ions LinBr (n=2-7) and ionization energies studied by thermal ionization mass spectrometry.: Velickovic S., Dustebek J., Veljkovic F., Veljkovic M.; JOURNAL OF MASS SPECTROMETRY 2012, 47, 627-631

4 Formation and ionization energies of small chlorine-doped lithium clusters by thermal ionization mass spectrometry.: Velickovic S., Djustebek J., Veljkovic F., Radak B., Veljkovic M.; RAPID COMMUNICATIONS IN MASS SPECTROMETRY 2012, 26, 443-448

5 On the triplet ground state of tetrahedral X-4 clusters (X = Li, Na, K, Cu).: Verdicchio M., Evangelisti S., Leininger T., Monari A.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 094301

6 TDDFT calculation for photoabsorption spectra of Li-n (n=2-11, 20) clusters.: Hong X., Wang F.; PHYSICS LETTERS A 2011, 375, 1883-1888

7 Structural, electronic, and optical properties of Li-n-1(-), Li-n and Li-n+1(+) (n=20, 40) clusters by first-principles calculations.: Zhao G., Bin L., Xue J., Ji-Jun Z.; ACTA PHYSICA SINICA 2011, 60, 013601

8 Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure.: Weissker H., Mottet C.; PHYSICAL REVIEW B 2011, 84, 165443
9 Structural, electronic, and optical properties of medium-sized Li-n clusters (n=20, 30, 40, 50) by density functional theory.: Guo Z., Lu B., Jiang X., Zhao J., Xie R.; PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES 2010, 42, 1755-1762

11 The high stability of boron-doped lithium clusters Li5B, Li6B+/- and Li7B: A case of the phenomenological shell model.: Tai T., Nguyen M.; CHEMICAL PHYSICS LETTERS 2010, 489, 75-80

13 Electronically excited states and visible region photodissociation spectroscopy of Au(m)(+)-center dot Ar(n) clusters (m=7-9): Molecular dimensionality transition?: Gloess A., Schneider H., Weber J., Kappes M.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 114312

15 High accuracy ab initio studies of Li-6(+), Li-6(-), and three isomers of Li-6.: Temelso B., Sherrill C.; JOURNAL OF CHEMICAL PHYSICS 2005, 122, 064315

17 Size and shape effects on electronic energy levels: From infinite to nanoscopic systems in three-dimensional space.: Bouju X., Prunele E.; PHYSICA STATUS SOLIDI B-BASIC RESEARCH 2000, 217, 819-832

18 The interaction of gold clusters with methanol molecules: Ab initio molecular dynamics of Aun+CH3OH and AunCH3OH.: Rousseau R., Marx D.; JOURNAL OF CHEMICAL PHYSICS 2000, 112, 761-769

19 The role of quantum and thermal fluctuations upon properties of lithium clusters.: Rousseau R., Marx D.; JOURNAL OF CHEMICAL PHYSICS 1999, 111, 5091-5101

20 Fluctuations and bonding in lithium clusters.: Rousseau R., Marx D.; PHYSICAL REVIEW LETTERS 1998, 80, 2574-2577

22 Spherical averaged jellium model with norm-conserving pseudopotentials.: Mattei G., Toigo F.; EUROPEAN PHYSICAL JOURNAL D 1998, 3, 245-256

24 Symmetrized shape oscillation in the structure of Li-6(7) clusters observed by molecular beam electron-spin resonance.: Hishinuma N.; JOURNAL OF CHEMICAL PHYSICS 1996, 105, 5358-5368

25 Alternative microscopic approach to the photoabsorption of small clusters.: Grabowski S., Garcia M., Bennemann K.; MODERN PHYSICS LETTERS B 1996, 10, 241-268

29 The Geometric Structures and the Vertical Excited States of Li(2)B(2).: Huabei Z., Anmin T., Guosen Y.; ACTA PHYSICO-CHIMICA SINICA 1995, 11, 142-146

31 SELF-CONSISTENT CALCULATIONS IN SPHERICAL METAL-CLUSTERS WITH UNIFORMLY AVERAGED REALISTIC PSEUDOPOTENTIALS.: ALASIA F., SERRA L., BROGLIA R., GIAI N., LIPPARINI E., ROMAN H.; PHYSICAL REVIEW B 1995, 52, 8488-8498

32 CALCULATIONS OF HYDROGEN CHEMISORPTION ENERGIES ON OPTIMIZED COPPER CLUSTERS.: TRIGUERO L., WAHLGREN U., BOUSSARD P., SIEGBAHN P.; CHEMICAL PHYSICS LETTERS 1995, 237, 550-559

34 LI-5 AS A PSEUDOROTATING PLANAR CLUSTER.: KAWAI R., TOMBRELLO J., WEARE J.; PHYSICAL REVIEW A 1994, 49, 4236-4239

35 PACKING TRANSITIONS IN NANOSIZED LI CLUSTERS.: SUNG M., KAWAI R., WEARE J.; PHYSICAL REVIEW LETTERS 1994, 73, 3552-3555

36 Stabilities and Vertical Excited States of Li(3)Al and Li(2)B(2).: Huabei Z., Anmin T., Guosen Y.; ACTA PHYSICO-CHIMICA SINICA 1994, 10, 481-483

37 POTENTIAL-ENERGY FUNCTIONS FOR ATOMIC SOLIDS .5. APPLICATION TO ALKALI-METAL SOLIDS.: FANG J., JOHNSTON R., MURRELL J.; MOLECULAR PHYSICS 1993, 78, 1405-1422

38 STRUCTURAL-PROPERTIES OF SODIUM MICROCLUSTERS (N=4-34) USING A MONTE-CARLO GROWTH METHOD.: POTEAU R., SPIEGELMANN F.; JOURNAL OF CHEMICAL PHYSICS 1993, 98, 6540-6557

42 COLLECTIVE DIPOLE OSCILLATIONS IN SMALL SILVER CLUSTERS EMBEDDED IN RARE-GAS MATRICES.: FEDRIGO S., HARBICH W., BUTTET J.; PHYSICAL REVIEW B 1993, 47, 10706-10715

44 OPTICAL-ABSORPTION PROBES OF LIXNA4-X(X=1,2) - GEOMETRY, SUBSTITUTION ISOMERS, AND COMPOSITION-DEPENDENT ELECTRON DELOCALIZATION.: POLLACK S., WANG C., DAHLSEID T., KAPPES M.; JOURNAL OF CHEMICAL PHYSICS 1992, 96, 4918-4923

1 Double-hybrid density functionals: merging wavefunction and density approaches to get the best of both worlds.: Sancho-Garcia J., Adamo C.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2013, 15, 14581-14594

2 Dynamical second-order Bethe-Salpeter equation kernel: A method for electronic excitation beyond the adiabatic approximation.: Zhang D., Steinmann S., Yang W.; JOURNAL OF CHEMICAL PHYSICS 2013, 139, 154109

4 Computational methods for contemporary carbene chemistry.: Gerbig D., Ley D.; WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013, 3, 242-272

6 Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.: Shen J., Piecuch P.; JOURNAL OF CHEMICAL THEORY AND COMPUTATION 2012, 8, 4968-4988

7 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; JOURNAL OF COMPUTATIONAL CHEMISTRY 2012, 33, 1285-1303

8 Biorthogonal moment expansions in coupled-cluster theory: Review of key concepts and merging the renormalized and active-space coupled-cluster methods.: Shen J., Piecuch P.; CHEMICAL PHYSICS 2012, 401, 180-202

9 Inactive excitations in Mukherjee’s state-specific multireference coupled cluster theory treated with internal contraction: Development and applications.: Das S., Pathak S., Datta D., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 164104

10 Combining active-space coupled-cluster methods with moment energy corrections via the CC(P;Q) methodology, with benchmark calculations for biradical transition states.: Shen J., Piecuch P.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 144104

18 The spin-free analogue of Mukherjee’s state-specific multireference coupled cluster theory.: Datta D., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 054122

19 Multireference coupled-cluster study of the symmetry breaking in the C2B radical.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 074301

20 Ab Initio Multireference Investigation of Disjoint Diradicals: Singlet versus Triplet Ground States.: Chattopadhyay S., Chaudhuri R., Mahapatra U.; CHEMPHYSCHEM 2011, 12, 2791-2797

25 Further evidences of the quality of double-hybrid energy functionals for pi-conjugated systems. Sancho-Garcia J.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 234102

28 The ‘tailed’ CCSD(T) description of the automerization of cyclobutadiene. Lyakh D., Lotrich V., Bartlett R.; CHEMICAL PHYSICS LETTERS 2011, 501, 166-171

29 Inclusion of selected higher excitations involving active orbitals in the state-specific multireference coupled-cluster theory. Das S., Kallay M., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 234110

32 State specific calculation of dissociation potential energy curve using multireference perturbation theory. Mahapatra U., Chattopadhyay S.; RECENT ADVANCES IN SPECTROSCOPY: THEORETICAL, ASTROPHYSICAL AND EXPERIMENTAL PERSPECTIVES 2010, 31-42

34 Potential energy surface studies via a single root multireference coupled cluster theory. Mahapatra U., Chattopadhyay S.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 074102

37 Full implementation and benchmark studies of Mukherjee’s state-specific multireference coupled-cluster ansatz. Das S., Mukherjee D., Kallay M.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 074103

42 Coupled cluster with singles, doubles, and partial higher-order excitations based on the corresponding orbitals: The formulation and test applications for bond breaking processes.: Xu E., Shen J., Kou Z., Li S.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 134110

45 Active-space coupled-cluster methods.: Piecuch P.; MOLECULAR PHYSICS 2010, 108, 2987-3015

48 Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2009, 131, 114103

11 BonacicKoutecky V., Pittner J., Koutecky J., Ab initio study of structural and optical response properties of excess-electron lithium-hydride and sodium-fluoride clusters.: CHEMICAL PHYSICS 1996, 210, 313-341

1 Ab initio search for global minimum structures of neutral and anionic hydrogenated Li-5 clusters.: Muz I., Atis M., Canko O., Yildirim E.; CHEMICAL PHYSICS 2013, 418, 14-21

4 Electronic Structure and Thermochemical Properties of Small Neutral and Cationic Lithium Clusters and Boron-Doped Lithium Clusters: Li-n(0/+ and LinB0/+ (n=1-8).: Tai T., Nhat P., Nguyen M., Li S., Dixon D.; JOURNAL OF PHYSICAL CHEMISTRY A 2011, 115, 7673-7686

5 A theoretical study of pure and mixed caesium clusters and cluster ions, CslHmOn0/+, l ¡= 5: geometry, energetics and photofragmentation.: Krapf S., Schill M., Kroetz S., Koslowski T.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2011, 13, 14973-14983

6 Electrostatic guidelines and molecular tailoring for density functional investigation of structures and energetics of (Li)(n) clusters.: Jovan J., Gadre S.; JOURNAL OF CHEMICAL PHYSICS 2008, 129, 164314

7 Ionization energies of the non-stoichiometric LinFn-1 (n=3, 4, 6) clusters.: Velickovic S., Djordjevic V., Cveticanin J., Djjustebek J., Veljkovic M., Neskovic O.; VACUUM 2008, 83, 378-380

10 Highly polar bonds and the meaning of covalency and ionicity - structure and bonding of alkal metal hydride oligomers.: Bickelhaupt F., Sola M., Guerra C.; FARADAY DISCUSSIONS 2007, 135, 451-468

11 Covalent versus ionic bonding in alkali metal fluoride oligomers.: Bickelhaupt F., Sola M., Guerra C.; JOURNAL OF COMPUTATIONAL CHEMISTRY 2007, 28, 238-250
12 Quantum chemistry close to the Fermi level: Reducing clusters to few active hole and/or electron systems.: Durand G., Spiegelman F.; THEORETICAL CHEMISTRY ACCOUNTS 2006, 116, 549-558

15 Theoretical study on the small clusters of LiH, NaH, BeH2, and MgH2.: Chen Y., Huang C., Hu W.; JOURNAL OF PHYSICAL CHEMISTRY A 2005, 109, 9627-9636

16 Ionization potentials of small lithium clusters ((LinnH)-H-) and hydrogenated lithium clusters (Li): Wheeler S., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2005, 122, 204328

19 Binding energies of small lithium clusters (Li-n) and hydrogenated lithium clusters (LinH): Wheeler S., Sattelmeyer K., Schleyer P., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2004, 120, 4683-4689

22 Static anisotropic and isotropic electric dipole polarizabilities of NanFn-1 clusters.: Durand G., Spiegelman F., Allouche A.; EUROPEAN PHYSICAL JOURNAL D 2003, 24, 19-22

24 Theoretical study on the geometric and electronic structure of the lithium-rich LinFn-1 (n=2-5) clusters.: Haketa N., Yokoyama K., Tanaka H., Kudo H.; JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM 2002, 577, 55-67

27 An ab initio study of the structures and relative stabilities of doubly charged [(NaCl)(m)(Na)(2)](2+) cluster ions.: Aguado A.; JOURNAL OF PHYSICAL CHEMISTRY B 2001, 105, 2761-2765

30 Bonding analysis of hydrogenated lithium clusters using the electron localization function.: Fuentealba P., Savin A.; JOURNAL OF PHYSICAL CHEMISTRY A 2001, 105, 11531-11533

32 Ab initio calculations of structural and electronic properties of small silver bromide clusters.: Rabilloud F., Spiegelmann F., Heully J.; JOURNAL OF CHEMICAL PHYSICS 1999, 111, 8925-8933

34 Density functional study of Li(n)H(m) clusters. Electric dipole polarizabilities.: Fuentealba P., Reyes O.; JOURNAL OF PHYSICAL CHEMISTRY A 1999, 103, 1376-1380

35 One-electron pseudopotential study of NanFn-1 clusters (2 ¡ = n ¡= 29). I. Electronic and structural properties of the ground state.: Durand G., Giraud-Girard J., Maynau D., Spiegelmann F.; JOURNAL OF CHEMICAL PHYSICS 1999, 110, 7871-7883

37 Photoabsorption and ionization energies of nonstoichiometric CsI clusters: Metallization of a salt.: Frank S., Malinowski N., Tast F., Heinebrodt M., Billas I., Martin T.; JOURNAL OF CHEMICAL PHYSICS 1997, 106, 6217-6221

39 Metal-insulator segregation in lithium rich LinHm+ clusters.: Antoine R., Dugourd P., Rayane D., Benichou E., Broyer M.; JOURNAL OF CHEMICAL PHYSICS 1997, 107, 2664-2672

1 Double-hybrid density functionals: merging wavefunction and density approaches to get the best of both worlds.: Sancho-Garcia J., Adamo C.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2013, 15, 14581-14594

4 Note: Excited state studies of ozone using state-specific multireference coupled cluster methods.: Bhaskaran-Nair K., Kowalski K.; JOURNAL OF CHEMICAL PHYSICS 2012, 137, 216101

5 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; JOURNAL OF COMPUTATIONAL CHEMISTRY 2012, 33, 1285-1303

7 Combining active-space coupled-cluster methods with moment energy corrections via the CC(P;Q) methodology, with benchmark calculations for biradical transition states.: Shen J., Piecuch P.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 144104

8 Superior performance of Mukherjee’s state-specific multi-reference coupled-cluster theory at the singles and doubles truncation scheme with localized active orbitals.: Das S., Kallay M., Mukherjee D.; CHEMICAL PHYSICS 2012, 392, 83-89

9 Meaning and magnitude of the reduced density matrix cumulants.: Hanauer M., Koehn A.; CHEMICAL PHYSICS 2012, 401, 50-61

11 Ab Initio Multireference Investigation of Disjoint Diradicals: Singlet versus Triplet Ground States.: Chattopadhyay S., Chaudhuri R., Mahapatra U.; CHEMPHYSCHEM 2011, 12, 2791-2797

13 Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly.: Hanauer M., Koehn A.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 204111

14 Further evidences of the quality of double-hybrid energy functionals for pi-conjugated systems.: Sancho-Garcia J.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 234102

16 The ‘tailored’ CCSD(T) description of the automerization of cyclobutadiene.: Lyakh D., Lotrich V., Bartlett R.; CHEMICAL PHYSICS LETTERS 2011, 501, 166-171

20 Tetra-radical and ionic S-1/S-0 conical intersections of cyclobutadiene.: Sumita M., Saito K.; CHEMICAL PHYSICS 2010, 371, 30-35

23 Cholesky decomposition within local multireference singles and doubles configuration interaction.: Chwee T., Carter E.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 074104

26 Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.: Li X., Paldus J.; JOURNAL OF PHYSICAL CHEMISTRY A 2009, 113, 114103

Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 024102

High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems. Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 154113

Collectivity of plasmon excitations in small sodium clusters with planar structure. Yin H., Zhang H.; PHYSICA B-CONDENSED MATTER 2012, 407, 416-420

Meaning and magnitude of the reduced density matrix cumulants. Hanauer M., Koehn A.; CHEMICAL PHYSICS 2012, 401, 50-61

UV-visible absorption of small gold clusters in neon: Au-n (n=1-5 and 7-9). Lecoultre S., Rydlo A., Felix C., Buttet J., Gilb S., Harbich W.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 074302

Optical absorption spectra of Na-5, Na-6 and Na-7 clusters: a theoretical study. Yan-Ping Z., Feng-Shou Z., Ke-Lai M., Guo-Qing X.; ACTA PHYSICA SINICA 2007, 56, 2092-2097

High accuracy ab initio studies of Li-6(+), Li-6(-), and three isomers of Li-6. Temelso B., Sherrill C.; JOURNAL OF CHEMICAL PHYSICS 2005, 122, 064315

First-principles density-functional calculations for optical spectra of clusters and nanocrystals. Vasiliev I., Ogut S., Chelikowsky J.; PHYSICAL REVIEW B 2002, 65, 115416

Ab initio excitation spectra and collective electronic response in atoms and clusters. Vasiliev I., Ogut S., Chelikowsky J.; PHYSICAL REVIEW LETTERS 1999, 82, 1919-1922

Static polarizabilities of Na(n) (n \geq 9) clusters: An all-electron density functional study. Calaminici P., Jug K., Koster A.; JOURNAL OF CHEMICAL PHYSICS 1999, 111, 4613-4620
The GW method. Aryasetiawan F., Gunnarsson O.; *REPORTS ON PROGRESS IN PHYSICS* 1998, **61**, 237-312

Spherical averaged jellium model with norm-conserving pseudopotentials. Mattei G., Toigo F.; *EUROPEAN PHYSICAL JOURNAL D* 1998, **3**, 245-256

Quasiparticle energies in clusters determined via total-energy differences. Application to C-60 and Na-4. Cappellini G., Casula F., Yang J., Bechstedt F.; *PHYSICAL REVIEW B* 1997, **56**, 3628-3631

Ultrafast photodissociation of K-n=3 ... 9 clusters. Ruff A., Rutz S., Schreiber E., Woste L.; *ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS* 1996, **37**, 175-180

The structure of Li-7(-) and K-7(-). Bauschlicher C.; *CHEMICAL PHYSICS* 1996, **206**, 35-42

Photoelectron-spectroscopy of alkali-metal tetramer anions - the anomalous spectrum of Li-4(-). Sarkas H., Arnold S., Hendricks J., Bowen K.; *JOURNAL OF CHEMICAL PHYSICS* 1995, **102**, 2653-2656

First principles study of photoelectron-spectra of Cu-N(-) clusters. Massobrio C., Pasquarello A., Car R.; *PHYSICAL REVIEW LETTERS* 1995, **75**, 2104-2107

Femtosecond spectroscopy of molecules and clusters. Baumert T., Gerber G.; *ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS* 1995, **35**, 163-208

Configuration-interaction calculations of jellium clusters by the nuclear shell-model. Koskinen M., Manninen M., Lipas P.; *PHYSICAL REVIEW B* 1994, **49**, 8418-8436

A comparative theoretical-study of stable geometries and energetic properties of small silver clusters. Santamaria R., Kaplan I., Novaro O.; *CHEMICAL PHYSICS LETTERS* 1994, **218**, 395-400

38 COLLECTIVE DIPOLE OSCILLATIONS IN SMALL SILVER CLUSTERS EMBEDDED IN RARE-GAS MATRICS.: FEDRIGO S., HARBICH W., BUTTET J.;; PHYSICAL REVIEW B 1993, 47, 10706-10715

1 A Lagrange multiplier approach for excited state properties through intermediate Hamiltonian formulation of Fock space multireference coupled-cluster theory.: Gupta J., Vaval N., Pal S.;; JOURNAL OF CHEMICAL PHYSICS 2013, 139, 074108

5 Cholesky decomposition within local multireference singles and doubles configuration interaction.: Chwee T., Carter E.;; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 074104

9 A coupled cluster approach with a hybrid treatment of connected triple excitations: Implementation and applications for open-shell systems.: Shen J., Kou Z., Xu E., Li S.;; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 234106

15 A multi-reference coupled-cluster study on the potential energy surface of N-2 including ground and excited states: spin projections and wavefunction overlaps.: Hanrath M., Engels-Putzka A.; THEORETICAL CHEMISTRY ACCOUNTS 2009, 122, 197-206

18 Higher excitations for an exponential multireference wavefunction Ansatz and single-reference based multireference coupled cluster Ansatz: Application to model systems H(4), P(4), and BeH(2):. Hanrath M.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 154118

20 Coupling term derivation and general implementation of state-specific multireference coupled cluster theories.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 024102

21 High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 154113

1 Electronic coherence within the semiclassical field-induced surface hopping method: strong field quantum control in K-2.: Petersen J., Mitric R.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2012, 14, 8299-8306

2 Nonadiabatic dynamics with trajectory surface hopping method.: Barbatti M.; WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011, 1, 620-633

3 Solving the time-dependent Schrödinger equation for nuclear motion in one step: direct dynamics of non-adiabatic systems.: Worth G., Robb M., Lasorne B.; MOLECULAR PHYSICS 2008, 106, 2077-2091

5 Analysis and Control of Ultrafast Photoinduced Reactions With 374 Figures, 239 in color Introduction.: Jortner J.; ANALYSIS AND CONTROL OF ULTRAFAST PHOTOINDUCED REACTIONS 2007, 1-23

6 Simulation of the photodeactivation of formamide in the n(O)-pi* and pi-pi* states: An ab initio on-the-fly surface-hopping dynamics study.: Antol I., Eckert-Maksic M., Barbatti M., Lischka H.; JOURNAL OF CHEMICAL PHYSICS 2007, 127, 234303

9 Optimal control of ultrafast laser driven many-electron dynamics in a polyatomic molecule: N-methyl-6-quinolone.: Klamroth T.; JOURNAL OF CHEMICAL PHYSICS 2006, 124, 144310

11 Inelastic scattering matrix elements for the nonadiabatic collision B(P-2(1/2))+H-2((1)Sigma(+)(g)),j)+# B(P-2(3/2))+H-2((1)Sigma(+)(g),j)+: Weeks D., Niday T., Yang S.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 164301

12 Conical intersections and semiclassical trajectories: Comparison to accurate quantum dynamics and analyses of the trajectories.: Jasper A., Truhlar D.; JOURNAL OF CHEMICAL PHYSICS 2005, 122, 044101

14 Theoretical analyses of the dynamics of excited states of small sodium fluoride aggregates.: Heitz M., Durand G., Spiegelman F., Meier C.; \textit{Journal de Physique IV} 2004, 119, 189-190

21 Ab initio quantum molecular dynamics.: Ben-Nun M., Martinez T.; \textit{Advances in Chemical Physics, Volume 121} 2002, 439-512

22 Applying direct molecular dynamics to non-adiabatic systems.: Worth G., Robb M.; \textit{Role of Degenerate States in Chemistry} 2002, 355-431

23 A computational study of photoisomerization in Al3O3- clusters.: Cui X., Morrison I., Han J.; \textit{Journal of Chemical Physics} 2002, 117, 1077-1084

1 Bridging single and multireference coupled cluster theories with universal state selective formalism.: Bhaskaran-Nair K., Kowalski K.; \textit{Journal of Chemical Physics} 2013, 138, 204114

A coupled cluster approach with a hybrid treatment of connected triple excitations: Implementation and applications for open-shell systems.: Shen J., Kou Z., Xu E., Li S.; *Journal of Chemical Physics* 2010, **133**, 234106

Coupled cluster with singles, doubles, and partial higher-order excitations based on the corresponding orbitals: The formulation and test applications for bond breaking processes.: Xu E., Shen J., Kou Z., Li S.; *Journal of Chemical Physics* 2010, **132**, 134110

Active-space coupled-cluster methods.: Piecuch P.; *Molecular Physics* 2010, **108**, 2987-3015

Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.: Li X., Paldus J.; *Journal of Chemical Physics* 2009, **131**, 114103

Full potential energy curve for N-2 by the reduced multireference coupled-cluster method.: Li X., Paldus J.; *Journal of Chemical Physics* 2008, **129**, 054104

Spectroscopic constants of single-bond diatomic molecules and singlet-triplet gaps of diradicals by the block-correlated coupled cluster theory.: Shen J., Fang T., Hua W., Li S.; *Journal of Physical Chemistry A* 2008, **112**, 4703-4709

Block correlated coupled cluster method with a complete-active-space self-consistent-field reference function: The formula for general active spaces and its applications for multibond breaking systems.: Fang T., Shen J., Li S.; *Journal of Chemical Physics* 2008, **128**, 224107

Reduced Multireference Coupled-Cluster Method and Its Application to the Pyridyne Diradicals.: Li X., Paldus J.; *Journal of Theoretical & Computational Chemistry* 2008, **7**, 805-820

Partially linearized, fully size-extensive, and reduced multireference coupled-cluster methods. I. Formalism and mutual relationship.: Li X., Paldus J.; *Journal of Chemical Physics* 2008, **128**, 144118

Coupling term derivation and general implementation of state-specific multireference coupled cluster theories.: Evangelista F., Allen W., Schaefer H.; *Journal of Chemical Physics* 2007, **127**, 024102

Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: The formulation and test applications for single bond breaking.: Fang T., Li S.; *Journal of Chemical Physics* 2007, **127**, 204108

High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems.: Evangelista F., Allen W., Schaefer H.; *Journal of Chemical Physics* 2006, **125**, 154113

3 Ab Initio Multireference Investigation of Disjoint Diradicals: Singlet versus Triplet Ground States.: Chattopadhyay S., Chaudhuri R., Mahapatra U.; *CHEMPHYSCHEM* 2011, 12, 2791-2797

4 Density functional theory study of silole-fused tetramethyleneethane biradicals with orbital interactions.: Kano Y., Mizuno K., Ikeda H.; *JOURNAL OF ORGANIC CHEMISTRY* 2012, 77, 11096-11100

5 Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF CHEMICAL PHYSICS* 2010, 133, 074102

6 Topological Control of Spin States in Disjoint Diradicals.: Lenington M., Wenthold P.; *JOURNAL OF PHYSICAL CHEMISTRY A* 2010, 114, 1334-1337

7 The facile generation of a tetramethyleneethane type radical cation and biradical utilizing a 3,4-di(alpha-styryl)furan and a photoinduced ET and back ET sequence.: Ikeda T., Ikeda H., Takahashi Y., Yamada M., Mizuno K., Tero-Kubota S., Yamauchi S.; *JOURNAL OF THE AMERICAN CHEMICAL SOCIETY* 2008, 130, 2466-2472

9 Coupled-cluster and configuration-interaction approaches to quasidegeneracy.: Paldus J., Li X.; *Recent Advances in the Theory of Chemical and Physical Systems* 2006, 13-43

15 A case study of state-specific and state-averaged Brueckner equation-of-motion coupled-cluster theory: The ionic-covalent avoided crossing in lithium fluoride.: Nooijen M., Shamasundar K.; *COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS* 2005, 70, 1082-1108

18 Ab initio quantum chemical investigation of the spin states of some chain and monocyclic diradicals.: Datta S., Mukherjee P., Jha P.; *JOURNAL OF PHYSICAL CHEMISTRY A* 2003, 107, 5049-5057

2 BLOCK CORRELATED COUPLED CLUSTER THEORY WITH A COMPLETE ACTIVE-SPACE SELF-CONSISTENT-FIELD REFERENCE FUNCTION: THE GENERAL FORMALISM AND APPLICATIONS. Fang T., Shen J., Li S.; *RECENT PROGRESS IN COUPLED CLUSTER METHODS: THEORY AND APPLICATIONS* 2010, 145-174

6 Connection Between a Few Jeziorski-Monkhorst Ansatz-Based Methods. Kong L.; *INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY* 2009, 109, 441-447

8 Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. Evangelista F., Allen W., Schaefer H.; *JOURNAL OF CHEMICAL PHYSICS* 2007, 127, 024102

9 Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: The formulation and test applications for single bond breaking. Fang T., Li S.; *JOURNAL OF CHEMICAL PHYSICS* 2007, 127, 204108

11 Coupled-cluster and configuration-interaction approaches to quasidegeneracy. Paldus J., Li X.; *Recent Advances in the Theory of Chemical and Physical Systems* 2006, 13-43

12 A convenient decontraction procedure of internally contracted state-specific multireference algorithms. Angeli C., Calzado C., Cimiraglia R., Malrieu J.; *JOURNAL OF CHEMICAL PHYSICS* 2006, 124, 234109

5 The valence and Rydberg excited states of CH2: A theoretical exploration.: Li B., Wei Z., Wu H.; JOURNAL OF COMPUTATIONAL CHEMISTRY 2012, 33, 2498-2503

6 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; JOURNAL OF COMPUTATIONAL CHEMISTRY 2012, 33, 1285-1303

8 Superior performance of Mukherjee’s state-specific multi-reference coupled-cluster theory at the singles and doubles truncation scheme with localized active orbitals.: Das S., Kallay M., Mukherjee D.; CHEMICAL PHYSICS 2012, 392, 83-89

12 Inclusion of selected higher excitations involving active orbitals in the state-specific multireference coupled-cluster theory.: Das S., Kallay M., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 234110

16 Accurate ab initio potential energy curve of O-2. I. Nonrelativistic full configuration interaction valence correlation by the correlation energy extrapolation by intrinsic scaling method.: Bytautas L., Ruedenberg K.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 074109

18 Force field of para- and metabenzyne diradicals: A multireference coupled-cluster study.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 114103

20 Perturbative triples corrections in state-specific multireference coupled cluster theory.: Evangelista F., Prochnow E., Gauss J., Schaefer H.; *JOURNAL OF CHEMICAL PHYSICS* 2010, **132**, 074107

21 Generating functionals based formulation of the method of moments of coupled cluster equations.: Kowalski K., Fan P.; *JOURNAL OF CHEMICAL PHYSICS* 2009, **130**, 084112

22 Extensive regularization of the coupled cluster methods based on the generating functional formalism: Application to gas-phase benchmarks and to the S(N)2 reaction of CHCl3 and OH- in water.: Kowalski K., Valiev M.; *JOURNAL OF CHEMICAL PHYSICS* 2009, **131**, 234107

1 The unique bonding characteristics of beryllium and the Group IIA metals.: Heaven M., Bondybey V., Merritt J., Kaledin A.; *CHEMICAL PHYSICS LETTERS* 2011, **506**, 1-14

3 Correction for triples in reduced multireference coupled-cluster approaches.: Paldus J., Li X.; *COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS* 2007, **72**, 100-120

4 Structure and stability of small ZnCn clusters.: Barrientos C., Redondo P., Largo A.; *JOURNAL OF CHEMICAL THEORY AND COMPUTATION* 2007, **3**, 657-664

5 Coupled-cluster and configuration-interaction approaches to quasidegeneracy.: Paldus J., Li X.; *Recent Advances in the Theory of Chemical and Physical Systems* 2006, 13-43

7 Structure and properties of the open-chain calcium-doped carbon clusters CaCn, CaCn+, and CaCn- (n=1-8).: Largo A., Redondo P., Barrientos C.; *JOURNAL OF PHYSICAL CHEMISTRY A* 2004, **108**, 6421-6429

8 Can we avoid the intruder-state problems in the state-universal coupled-cluster approaches while preserving size extensivity?: Paldus J., Li X.; *COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS* 2004, **69**, 90-104

9 Radiative transition probabilities and lifetimes for the band systems (1) (3)Pi-X (3)Sigma(-) and (2) (3)Sigma(-)-X (3)Sigma(-) of the isovalent molecules BeC, MgC, and CaC.: Pelegrini M., Roberto-Neto O., Ornellas F., Machado F.; *CHEMICAL PHYSICS LETTERS* 2004, **383**, 143-148

10 A theoretical study of the radiative transition probabilities and lifetimes of the lowest quartet states of CaN.: Pelegrini M., Roberto-Neto O., Machado F.; *CHEMICAL PHYSICS LETTERS* 2003, **375**, 9-16

11 General-model-space state-universal coupled-cluster theory: Connectivity conditions and explicit equations.: Li X., Paldus J.; *JOURNAL OF CHEMICAL PHYSICS* 2003, **119**, 5320-5333

12 Analysis of the multireference state-universal coupled-cluster Ansatz.: Paldus J., Li X.; *JOURNAL OF CHEMICAL PHYSICS* 2003, **118**, 6769-6783

21 Bhaskaran-Nair K., Demel O., Pittner J., Multireference Mukherjee’s coupled cluster method with triexcitations in the linked formulation: Efficient implementation and applications.; *JOURNAL OF CHEMICAL PHYSICS* 2010, 132, 154105 IF$_{2012}$ = **3.164** (35 citací/21 bez autocitací)
1 The valence and Rydberg excited states of CH2: A theoretical exploration. Li B., Wei Z., Wu H.; *Journal of Computational Chemistry* 2012, **33**, 2498-2503

3 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes. Mahapatra U., Chattopadhyay S.; *Journal of Computational Chemistry* 2012, **33**, 1285-1303

4 Computational Photochemistry. Yajun L.; *Progress in Chemistry* 2012, **24**, 950-956

7 Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations. Sinha D., Maitra R., Mukherjee D.; *Journal of Chemical Physics* 2012, **137**, 094104

9 Inactive excitations in Mukherjee’s state-specific multireference coupled cluster theory treated with internal contraction: Development and applications. Das S., Pathak S., Datta D., Mukherjee D.; *Journal of Chemical Physics* 2012, **136**, 164104

10 The spin-free analogue of Mukherjee’s state-specific multireference coupled cluster theory. Datta D., Mukherjee D.; *Journal of Chemical Physics* 2011, **134**, 054122

11 Multireference coupled-cluster study of the symmetry breaking in the C2B radical. Li X., Paldus J.; *Journal of Chemical Physics* 2011, **134**, 074301

14 Multi-reference state-universal coupled-cluster approaches to electronically excited states. Li X., Paldus J.; *Journal of Chemical Physics* 2011, **134**, 214118

15 Application of the uncoupled state-specific multireference coupled cluster method to a weakly bonded system: exploring the ground state Be-2. Mahapatra U., Chattopadhyay S.; *Journal of Physics B-Atomic Molecular and Optical Physics* 2011, **44**, 105102

17 Inclusion of selected higher excitations involving active orbitals in the state-specific multireference coupled-cluster theory. Das S., Kallay M., Mukherjee D.; *Journal of Chemical Physics* 2010, **133**, 234110

18 Potential energy surface studies via a single root multireference coupled cluster theory. Mahapatra U., Chattopadhyay S.; *Journal of Chemical Physics* 2010, **133**, 074102

19 Multireference coupled-cluster Ansatz. Jezierski B.; *Molecular Physics* 2010, **108**, 3043-3054

21 Multireference general-model-space state-universal and state-specific coupled-cluster approaches to excited states.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 184106

6 On our efforts constructing a proper multireference coupled-cluster method.: Szalay P.; MOLECULAR PHYSICS 2010, 108, 3055-3065

8 State specific equation of motion coupled cluster method in general active space.: Kong L., Shamasundar K., Demel O., Nooijen M.; JOURNAL OF CHEMICAL PHYSICS 2009, 130, 114101

9 Connection Between a Few Jeziorski-Monkhorst Ansatz-Based Methods.: Kong L.; INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2009, 109, 441-447

12 Coupled-cluster and configuration-interaction approaches to quasidegeneracy.: Paldus J., Li X.; Recent Advances in the Theory of Chemical and Physical Systems 2006, 13-43

1 Excited state dynamics of DNA bases.: Kleinermanns K., Nachtigallová D., Vries M.; INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY 2013, 32, 308-342

2 Probing ultrafast dynamics in photoexcited pyrrole: timescales for (1)pi sigma* mediated H-atom elimination.: Roberts G., Williams C., Yu H., Chatterley A., Young J., Ulrich S., Stavros V.; FARADAY DISCUSSIONS 2013, 163, 95-116

3 Ab initio insight into ultrafast nonadiabatic decay of hypoxanthine: keto-N7H and keto-N9H tautomers.: Guo X., Lan Z., Cao Z.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2013, 15, 10777-10782
4 UV Photodissociation of Pyrroles: Symmetry and Substituent Effects.: Karsili T., Marchetti B., Moca R., Ashfold M.; JOURNAL OF PHYSICAL CHEMISTRY A 2013, 117, 12067-12074

5 A multi-sheeted three-dimensional potential-energy surface for the H-atom photodissociation of phenol.: Ramesh S., Domcke W.; FARADAY DISCUSSIONS 2013, 163, 73-94

6 Simulation of ultrafast photodynamics of pyrrole with a multiconfigurational Ehrenfest method.: Saita K., Nix M., Shalashilin D.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2013, 15, 16227-16235

7 Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory.: Curchod B., Rothlisberger U., Tavernelli I.; CHEMPSYCHEM 2013, 14, 1314-1340

9 Low-lying electronic states and their nonradiative deactivation of thieno[3,4-b]pyrazine: An ab initio study.: Guo X., Cao Z.; JOURNAL OF CHEMICAL PHYSICS 2012, 137, 224313

11 Modeling the weak hydrogen bonding of pyrrole and dichloromethane through Raman and DFT study.: Singh D., Asthana B., Srivastava S.; JOURNAL OF MOLECULAR MODELING 2012, 18, 3541-3552

15 Exploring Ultrafast H-Atom Elimination versus Photofragmentation Pathways in Pyrazole Following 200 nm Excitation.: Williams C., Roberts G., Yu H., Evans N., Ullrich S., Stavros V.; JOURNAL OF PHYSICAL CHEMISTRY A 2012, 116, 2600-2609

17 Photochemistry of hydrogen bonded heterocycles probed by photodissociation experiments and ab initio methods.: Slavicek P., Farnik M.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2011, 13, 12123-12137

18 A computational study of radiationless deactivation mechanisms of furan.: Stenrup M., Larson A.; CHEMICAL PHYSICS 2011, 379, 6-12

3 Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.: Shen J., Piecuch P.; JOURNAL OF CHEMICAL THEORY AND COMPUTATION 2012, 8, 4968-4988

4 State specific multireference Moller-Plesset perturbation theory: A few applications to ground, excited and ionized states.: Chattopadhyay S., Mahapatra U., Chaudhuri R.; CHEMICAL PHYSICS 2012, 401, 15-26

5 Thermal denitrogenation of 7-isopropylidene-2,3-diaza-norbornene: formation of substituted 3-methylene-(1,4)-pentadienes.: Bozkaya U., Ozkan I.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2012, 14, 14282-14292

7 Diradicals and Diradicaloids in Natural Orbital Functional Theory.: Lopez X., Ruiperez F., Piris M., Matxain J., Ugalde J.; CHEMISTRY LETTERS 2011, 12, 1061-1065

14 Multireference Coupled-Cluster Methods for Ground and Low-Lying Excited States. A Benchmark Illustration on CH+ Potentials.: Li X., Paldus J.; INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2010, 110, 2734-2743

15 A coupled cluster approach with a hybrid treatment of connected triple excitations: Implementation and applications for open-shell systems.: Shen J., Kou Z., Xu E., Li S.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 234106

18 Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.: Li X., Paldus J.; JOURNAL OF CHEMICAL PHYSICS 2009, 131, 114103

19 Calculations of the Relative Energies of the Low-Lying Electronic States of 2-Methylenedioxyphenalene-1,3-diyl: Effects of a 1,8-Naphtho Bridging Group on Trimethylenemethane and of a Vinylidene Bridging Group on 1,8-Naphthoquinodimethane.: Dong H., Hrovat D., Quast H., Borden W.; JOURNAL OF PHYSICAL CHEMISTRY A 2009, 113, 895-901

25 Deutsch H., Becker K., Pittner J., BonacicKoutecky V., Matt S., Mark T., Semiclassical calculations of the cross section for electron-impact ionization of C-60,: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1996, 29, 5175-5181 IF1996 = 2.503 (34 citac`ı/24 bez autocitac`ı)

1 Kinetics of electron-beam dispersion of fullerite C-60.: Razanau I., Mieno T., Kazachenko V.; NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS 2012, 280, 117-122

3 Screening-corrected electron impact total and ionization cross sections for boron trifluoride (BF3) and boron trichloride (BCl3): Vinodkumar M., Korot K., Limbachiya C., Antony B.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2008, 41, 245202

4 Evaluation of direct ionization cross sections for C(60) by electron interaction.: Kumar N., Pal S.; 14TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF HIGHLY CHARGED IONS (HCI 2008) 2008, 163

5 Collective mode properties in a paired fullerene-ion plasma.: Oohara W., Kuwabara Y., Hatakayama R.; PHYSICAL REVIEW E 2007, 75, 056403

8 Molecular- and atomic-like photoionization of C-60 in the extreme ultraviolet.: Kou J., Mori T., Ono M., Haruyama Y., Kubozono Y., Mitsuke K.; CHEMICAL PHYSICS LETTERS 2003, 374, 1-6

9 Correlation effects in the (e, 2e) process on C-60.: Kidun O., Berakdar J.; PHYSICS OF THE SOLID STATE 2002, 44, 596-597

10 Recent results on multiple ionization and fragmentation of negatively charged fullerene ions by electron impact.: Hathiramani D., Scheier P., Salzborn E.; PHYSICS OF THE SOLID STATE 2002, 44, 511-514

11 Excitation spectra of free fullerene clusters.: Kidun O., Berakdar J.; SURFACE SCIENCE 2002, 507, 662-665

12 Inelastic interaction of an electron with a C-60 cluster.: Vostrikov A., Dubnov D., Agarkov A.; HIGH TEMPERATURE 2001, 39, 22-30

14 Manifestation of charge-density fluctuations in metal clusters: Suppression of the ionization channel.: Kidun O., Berakdar J.; PHYSICAL REVIEW LETTERS 2001, 87, 263401

16 Additivity rule for the calculation of electron scattering from polyatomic molecules.: Jiang Y., Sun J., Wan L.; PHYSICAL REVIEW A 2000, 62, 062712

19 Ionization cross sections of C-60 by fast electron impact.: Itoh A., Tsuchida H., Miyabe K., Majima T., Imanishi N.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1999, 32, 277-286

20 Sum rules and the photoabsorption cross sections of C-60.: Berkowitz J.; JOURNAL OF CHEMICAL PHYSICS 1999, 111, 1446-1453

21 Formation of C-60(+) and C-60(-) by electron impact in a gas phase.: Agarkov A., Galichin V., Drozdov S., Dubov D., Vostrikov A.; INTERNATIONAL CONFERENCE ON PHENOMENA IN IONIZED GASES, Vol IV, PROCEEDINGS 1999, 119-120

22 Quantum theory of fast electron impact ionization of C-60: Application of the spherical jellium model.: Keller S., Engel E.; CHEMICAL PHYSICS LETTERS 1999, 299, 165-170

26 Hartmann M., Pittner J., Bonacic-Koutecky V., Ab initio adiabatic dynamics involving excited states combined with Wigner distribution approach to ultrafast spectroscopy illustrated on alkali halide clusters.: JOURNAL OF CHEMICAL PHYSICS 2001, 114, 2106-2122 IF$_{2012}$ = 3.164 (33 citaci/11 bez autocitacii)

1 Ultrafast Dynamics of UV-Excited Imidazole.: Crespo-Otero R., Barbatti M., Yu H., Evans N., Ullrich S.; CHEM-PHYSCHEM 2011, 12, 3365-3375

7 Photodissociation and recombination dynamics of I-2 in DDR (decadodecasil 3R): Dependence on the geometry of the host matrix monitored by femtosecond time-resolved pump probe experiments.: Flachenecker G., Ermoshin V., Engel V., Neder R., Wirnsberger G., Materny A.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2003, 5, 865-876

1 Local Control Theory using Trajectory Surface Hopping and Linear-Response Time-Dependent Density Functional Theory.: Curchod B., Penfold T., Rothlisberger U., Tavernelli I.; CHIMIA 2013, 67, 218-221

2 Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory.: Curchod B., Rothlisberger U., Tavernelli I.; CHEMPHYSCHEM 2013, 14, 1314-1340

3 Approximate Theoretical Methods for Nonadiabatic Dynamics of Polyatomic Molecules.: Lan Z., Shao J.; PROGRESS IN CHEMISTRY 2012, 24, 1105-1119

4 Multiscale reactive molecular dynamics.: Knight C., Lindberg G., Voth G.; JOURNAL OF CHEMICAL PHYSICS 2012, 137, 22A525

5 Ultrafast Dynamics of UV-Excited Imidazole.: Crespo-Otero R., Barbatti M., Yu H., Evans N., Ullrich S.; CHEMPHYSCHEM 2011, 12, 3365-3375

6 Local control theory in trajectory-based nonadiabatic dynamics.: Curchod B., Penfold T., Rothlisberger U., Tavernelli I.; PHYSICAL REVIEW A 2011, 84, 042507

8 Application of mean-field and surface-hopping approaches for interrogation of the Xe(3)(+) molecular ion photexcitation dynamics.: Fiedler S., Kunttu H., Eloranta J.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 164309

9 Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study.: Granucci G., Persico M.; THEORETICAL CHEMISTRY ACCOUNTS 2007, 117, 1131-1143

1 A Lagrange multiplier approach for excited state properties through intermediate Hamiltonian formulation of Fock space multireference coupled-cluster theory.: Gupta J., Vaval N., Pal S.; JOURNAL OF CHEMICAL PHYSICS 2013, 139, 074108

7 Evaluation of the performance of single root multireference coupled cluster method for ground and excited states, and its application to geometry optimization.: Mahapatra U., Chattopadhayay S.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 044113

Study of equilibrium geometries of diradicaloid systems via state specific multireference Moller-Plesset perturbation theory (SS-MRMPPT):. Chattopadhyay S., Mahapatra U., Chaudhuri R.; CHEMICAL PHYSICS LETTERS 2010, 488, 229-234

BRILLOUIN-WIGNER METHODS FOR MANY-BODY SYSTEMS 2010, 133-189

Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 074102

Molecular applications of analytical gradient approach for the improved virtual orbital-complete active space configuration interaction method.: Chaudhuri R., Chattopadhyay S., Mahapatra U., Freed K.; JOURNAL OF CHEMICAL PHYSICS 2010, 132, 034105

Active-space coupled-cluster methods.: Piecuch P.; MOLECULAR PHYSICS 2010, 108, 2987-3015

On our efforts constructing a proper multireference coupled-cluster method.: Szalay P.; MOLECULAR PHYSICS 2010, 108, 3055-3065

Optimal White Light Control of the Negative to Neutral to Positive Charge Transition (NeNePo) in the Electronic Manifold of the Silver Trimer.: Schmidt B., Gause O., Hagemann F., Li S., Unrau W., Woeste L., Siebert T.; JOURNAL OF PHYSICAL CHEMISTRY A 2012, 116, 11459-11466

Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?: Xia Y., Xiong Y., Lim B., Skrabalak S.; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 2009, 48, 60-103

Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver.: Xiong Y., Washio I., Chen J., Sadilek M., Xia Y.; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 2007, 46, 4917-4921

Dissociation channels of silver bromide cluster Ag2Br, silver cluster Ag-3 and their ions studied by using alkali metal target.: Nagao H., Awaizu K., Hayakawa S., Iwamoto K., Toyoda M., Ichihara T.; EUROPEAN PHYSICAL JOURNAL D 2007, 45, 279-287

Femtosecond study of Cu(H2O) dynamics.: Muntean F., Taylor M., McCoy A., Lineberger W.; JOURNAL OF CHEMICAL PHYSICS 2004, 121, 5676-5687

30 Pittner J., Hobza P., CCSDT and CCSD(T) calculations on model H-bonded and stacked complexes.; CHEMICAL PHYSICS LETTERS 2004, 390, 496-499 IF2012 = 2.145 (29 citaci/15 bez autocitací)

1 CCSDTQ Optimized Geometry of Water Dimer.: Lane J.; JOURNAL OF CHEMICAL THEORY AND COMPUTATION 2013, 9, 316-323

4 On the relation between basis set convergence and electron correlation: a critical test for modern ab initio quantum chemistry on a “mindless” data set.: Balabin R.; STRUCTURAL CHEMISTRY 2011, 22, 1047-1051

5 Basis set convergence of the coupled-cluster correction, delta(CCSD(T))(MP2): Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases.: Marshall M., Burns L., Sherrill C.; JOURNAL OF CHEMICAL PHYSICS 2011, 135, 194102

6 Red-Shifted Hydrogen Bonds and Blue-Shifted van der Waals Contact in the Standard Watson-Crick Adenine-Thymine Base Pair.: Zhou P., Qiu W.; JOURNAL OF PHYSICAL CHEMISTRY A 2009, 113, 10306-10320

7 A Systematic CCSD(T) Study of Long-Range and Noncovalent Interactions between Benzene and a Series of First- and Second-Row Hydrides and Rare Gas Atoms.: Crittenden D.; JOURNAL OF PHYSICAL CHEMISTRY A 2009, 113, 1663-1669

9 Radical cations of the nucleic bases and radiation damage to DNA: Ab initio study.: Cauet E., Lievin J.; ADVANCES IN QUANTUM CHEMISTRY, VOL 52 2007, 121-147

10 Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules.: Antony J., Grimme S.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2006, 8, 5287-5293

11 Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method.: Fukuzawa K., Mochizuki Y., Tanaka S., Kitaura K., Nakano T.; JOURNAL OF PHYSICAL CHEMISTRY B 2006, 110, 16102-16110

12 Multicoefficient extrapolated density functional theory studies of pi...pi interactions: The benzene dimer.: Zhao Y., Truhlar D.; JOURNAL OF PHYSICAL CHEMISTRY A 2005, 109, 4209-4212

15 How well can new-generation density functional methods describe stacking interactions in biological systems?: Zhao Y., Truhlar D.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2005, 7, 2701-2705

2 Monitoring the effect of a control pulse on a conical intersection by time-resolved photoelectron spectroscopy.: Arasaki Y., Wang K., McKoy V., Takatsuka K.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2011, 13, 8681-8689

4 Guiding the time-evolution of a molecule: optical control by computer.: Worth G., Sanz C.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2010, 12, 15570-15579

5 Optical conversion of conical intersection to avoided crossing.: Arasaki Y., Takatsuka K.; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2010, 12, 1239-1242

7 Characterization of Majorization Monotone Quantum Dynamics.: Yuan H.; IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2010, 55, 955-959

8 Analysis and Control of Ultrafast Photoinduced Reactions With 374 Figures, 239 in color Introduction.: Jortner J.; ANALYSIS AND CONTROL OF ULTRAFAST PHOTOINDUCED REACTIONS 2007, 1-23

9 Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: An ab initio study of time-resolved photoelectron spectra.: Varella M., Arasaki Y., Ushiyama H., Takatsuka K., Wang K., McKoy V.; JOURNAL OF CHEMICAL PHYSICS 2007, 126, 054303

10 Quantum optimal control of molecular isomerization in the presence of a competing dissociation channel.: Artamonov M., Ho T., Rabitz H.; JOURNAL OF CHEMICAL PHYSICS 2006, 124, 064306

11 Optimal control of quantum dissipative dynamics: Analytic solution for cooling the three-level Lambda system.: Sklarz S., Tannor D., Khaneja N.; PHYSICAL REVIEW A 2004, 69, 053408

12 Dynamics of excited tetrakis(dimethylamino)ethylene solvated by argon atoms.: Sorgues S., Mestdagh J., Soep B., Visticot J.; CHEMICAL PHYSICS 2004, 301, 225-237

1 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; JOURNAL OF COMPUTATIONAL CHEMISTRY 2012, 33, 1285-1303

3 Superior performance of Mukherjee’s state-specific multi-reference coupled-cluster theory at the singles and doubles truncation scheme with localized active orbitals.: Das S., Kallay M., Mukherjee D.; CHEMICAL PHYSICS 2012, 392, 83-89

5 Alternative single-reference coupled cluster approaches for multireference problems: The simpler, the better.: Evangelista F.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 224102
6 Application of the uncoupled state-specific multireference coupled cluster method to a weakly bonded system: exploring the ground state Be-2.: Mahapatra U., Chattopadhyay S.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2011, 44, 105102

7 An orbital-invariant internally contracted multireference coupled cluster approach.: Evangelista F., Gauss J.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 114102

8 Inclusion of selected higher excitations involving active orbitals in the state-specific multireference coupled-cluster theory.: Das S., Kallay M., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 234110

10 Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 074102

15 High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems.: Evangelista F., Allen W., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2006, 125, 154113

IF$_{2012} = 2.771$ (24 citací/8 bez autocitací)

2 RELATIVISTIC EFFECTS IN ATOMIC AND MOLECULAR PROPERTIES.: Ilias M., Kelloe V., Urban M.; ACTA PHYSICA SLOVACA 2010, 60, 259-391

3 Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 074102

5 One-electron Chemistry of Carbohydrates.: Sinnot M., CARBOHYDRATE CHEMISTRY AND BIOCHEMISTRY: STRUCTURE AND MECHANISM 2007, 648-726

3 Can ORMAS be used for nonadiabatic coupling calculations? SiCH4 and butadiene contours.: West A., Windus T.; THEORETICAL CHEMISTRY ACCOUNTS 2012, 131, 1251

5 Using the computer to understand the chemistry of conical intersections.: Schapiro I., Melaccio F., Laricheva E., Olivucci M.; PHOTOCHEMICAL & PHOTobiological SCIENCES 2011, 10, 867-886

6 Unidirectional Energy Transfer in Conjugated Molecules: The Crucial Role of High-Frequency C C Bonds.: Fernandez-Alberti S., Kleiman V., Tretiak S., Roitberg A.; JOURNAL OF PHYSICAL CHEMISTRY LETTERS 2010, 1, 2699-2704

7 Nonadiabatic Molecular Dynamics Simulations of the Energy Transfer between Building Blocks in a Phenylene Ethynylene Dendrimer.: Fernandez-Alberti S., Kleiman V., Tretiak S., Roitberg A.; JOURNAL OF PHYSICAL CHEMISTRY A 2009, 113, 7535-7542

9 Energetics of cytosine singlet excited-state decay paths - A difficult case for CASSCF and CASPT2.: Blancafort L.; PHOTOchemistry AND PHOTobiology 2007, 83, 603-610

1 Structural Evolution and Stability of Hydrogenated Li-n (n=1-30) Clusters: A Density Functional Study.: Gautam S., Dharamyir K., Goel N.; JOURNAL OF PHYSICAL CHEMISTRY A 2011, 115, 6383-6389

3 Density functional theory study of binding energies, Li-7 nuclear magnetic shielding, and electric field gradient tensors on the small clusters of LinHm (m i= n i= 4):. Esrafilii M., Elmi F., Hadipour N.; JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2007, 6, 959-973

4 Influence of pressure and impurity hydrogen on the elastic property of metal lithium.: Chang-Bo C., Zhi-Ming L., Yan-Ming M., Tian C., Bing-Bing L., Guang-Tian Z.; ACTA PHYSICA SINICA 2007, 56, 2828-2832

5 Influence of impurity hydrogen on the structure and properties of bulk Li and pressure effects.: Zhiming L., Yanming M., Zhi H., Tian C., Wenjiong H., Bingbing L., Guangtian Z.; SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY 2006, 49, 740-747
6 Calculation of sequential hydrogen atom binding energies on a model lithium cluster.: Jasien P., Cross R.; JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM 2005, 756, 11-17

7 Band structure of a lithium doped hydrogen system.: Liu Z., Cui T., He Z., He W., Chen C., Zou G., Lu G.; PHYSICA B-CONDENSED MATTER 2005, 362, 136-144

8 Theoretical study on the small clusters of LiH, NaH, BeH2, and MgH2.: Chen Y., Huang C., Hu W.; JOURNAL OF PHYSICAL CHEMISTRY A 2005, 109, 9627-9636

9 Ionization potentials of small lithium clusters ((Li(nH)-H)-) and hydrogenated lithium clusters (Li): Wheeler S., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2005, 122, 204328

10 Binding energies of small lithium clusters (Li-n) and hydrogenated lithium clusters (LinH): Wheeler S., Sattelmeyer K., Schleyer P., Schaefer H.; JOURNAL OF CHEMICAL PHYSICS 2004, 120, 4683-4689

11 Stability and structure of LinH molecules (n=3-6): Experimental and density functional study.: Wu C., Jones R.; JOURNAL OF CHEMICAL PHYSICS 2004, 120, 5128-5132

13 Bonding analysis of hydrogenated lithium clusters using the electron localization function.: Fuentealba P., Savin A.; JOURNAL OF PHYSICAL CHEMISTRY A 2001, 105, 11531-11533

14 Complexation of hydrogen by lithium: structures, energies and vibrational spectra of Li+ (H-2)n (n=1-4), Li-H(H-2)(m) and Li-H+ (H-2)(m) (m=1-3): Davy R., Skoumbourdis E., Kompanchenko T.; MOLECULAR PHYSICS 1999, 97, 1263-1271

2 Quantum chemistry close to the Fermi level: Reducing clusters to few active hole and/or electron systems.: Durand G., Spiegelman F.; THEORETICAL CHEMISTRY ACCOUNTS 2006, 116, 549-558

3 Ultrafast dynamics in isolated molecules and molecular clusters.: Hertel I., Radloff W.; REPORTS ON PROGRESS IN PHYSICS 2006, 69, 1897-2003

6 Theoretical analyses of the dynamics of excitated states of small sodium fluoride aggregates.: Heitz M., Durand G., Spiegelman F., Meier C.; JOURNAL DE PHYSIQUE IV 2004, 119, 189-190

7 Relaxation dynamics of magic clusters.: Kim Y., Niemietz M., Gerhardt P., Gynz-Rekowski F., Gantefor G.; PHYSICAL REVIEW B 2004, 70, 035421

Theoretical study of the time-resolved photoelectron spectrum of NaF: effects of thermal initial conditions.: Heitz M., Durand G., Spiegelman F., Meier C.; *EUROPEAN PHYSICAL JOURNAL D* 2003, 24, 181-184

Optical Tracking of Single Ag Clusters in Nanostructured Water Films.: Krause S., Hartmann M., Kahle I., Neumann M., Heidernaetsch M., Spange S., Borczyskowski C.; *JOURNAL OF PHYSICAL CHEMISTRY C* 2013, 117, 24822-24829

Anion-radical oxygen centers in small (AgO)(n) clusters: Density functional theory predictions.: Trushin E., Zilberberg I.; *CHEMICAL PHYSICS LETTERS* 2013, 560, 37-41

A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters.: Heard C., Johnston R.; *EUROPEAN PHYSICAL JOURNAL D* 2013, 67, 34

Ultraviolet-visible absorption of small silver clusters in neon: Ag-n (n=1-9).: Lecoultre S., Rydlo A., Buttet J., Felix C., Gilb S., Harbich W.; *JOURNAL OF CHEMICAL PHYSICS* 2011, 134, 184504

First-Principles Study of Small Oxidized Silver Clusters.: Wang Y., Gong X.; *JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY* 2010, 10, 5500-5506

Molecular dynamics studies of the coalescence of silver clusters.: Yukna J., Wang L.; *JOURNAL OF PHYSICAL CHEMISTRY C* 2007, 111, 13337-13347

Gas-phase kinetics and catalytic reactions of small silver and gold clusters.: Bernhardt T.; *INTERNATIONAL JOURNAL OF MASS SPECTROMETRY* 2005, 243, 1-29

Trends in the structure and bonding of noble metal clusters.: Fernandez E., Soler J., Garzon I., Balbas L.; *PHYSICAL REVIEW B* 2004, 70, 165403

17 The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations.: Furche F., Ahlrichs R., Weis P., Jacob C., Gilb S., Bierweiler T., Kappe M.; *JOURNAL OF CHEMICAL PHYSICS* 2002, 117, 6982-6990

19 Ab initio study of silver bromide AgnBr(+) clusters (n \geq 6, p=n, n-1): Rabilloud F., Spiegelman F., L’Hermite J., Labastie P.; *JOURNAL OF CHEMICAL PHYSICS* 2001, 114, 289-305

4 Calculation of sequential hydrogen atom binding energies on a model lithium cluster.: Jasien P., Cross R.; *JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM* 2005, 756, 11-17

7 Relaxation of photoexcited sodium flouride.: L’Hermite J., Blanchet V., Padellec A., Labastie P.; *JOURNAL DE PHYSIQUE IV* 2004, 119, 211-212

8 Static anisotropic and isotropic electric dipole polarizabilities of NanFn-1 clusters.: Durand G., Spiegelman F., Allouche A.; *EUROPEAN PHYSICAL JOURNAL D* 2003, 24, 19-22

39 Bonacick-Koutecky V., Fuchs C., Gaus J., Pittner J., Koutecky J., Ground and excited-states properties of Na4FM=1-3, Li4H and Li4H2 clusters.: *ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS* 1993, 26, 192-194 IF=1.376 (22 citaci/13 bez autocitaci)

1 Complexation of hydrogen by lithium: structures, energies and vibrational spectra of Li+ (H-2)n (n=1-4), Li-H(H-2)(m) and Li-H+ (H-2)(m) (m=1-3): Davy R., Skoumbourdis E., Kompanchenko T.; *MOLECULAR PHYSICS* 1999, 97, 1263-1271

3 Pseudopotential approach of the electronic structure in clusters: Application to Alkali Halides and Rare Gases.: Durand G., Duplaa P., Spiegelmann F.; *ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS* 1997, 40, 177-181

4 Ionization potential measurement of NanFn-p for p up to 5.: Poncharal P., L’Hermite J., Labastie P.; *CHEMICAL PHYSICS LETTERS* 1996, 253, 463-468

7 An ab initio study of cluster-surface interaction: Na clusters on the NaCl(001) surface. Hakkinen H., Manninen M.; JOURNAL OF CHEMICAL PHYSICS 1996, 105, 10565-10571

8 Dissociation pathways and binding energies of (LiH)(n)Li+ and (LiH)(n)Li-3(+) clusters. Antoine R., Dugourd P., Rayane D., Broyer M.; JOURNAL OF CHEMICAL PHYSICS 1996, 104, 110-119

2 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes. Mahapatra U., Chattopadhyay S.; JOURNAL OF COMPUTATIONAL CHEMISTRY 2012, 33, 1285-1303

7 Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations. Sinha D., Maitra R., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2012, 137, 094104

8 Ab Initio Multireference Investigation of Disjoint Diradicals: Singlet versus Triplet Ground States. Chattopadhyay S., Chaudhuri R., Mahapatra U.; CHEMPHYSSCIEM 2011, 12, 2791-2797

1 Electronically excited states and visible region photodissociation spectroscopy of Au(m)(+)center dot Ar(n) clusters (m=7-9): Molecular dimensionality transition?: Gless A., Schneider H., Weber J., Kappes M.; JOURNAL OF CHEMICAL PHYSICS 2008, 128, 114312

2 Bimetallic Clusters.: Alonso J.; STRUCTURE AND PROPERTIES OF ATOMIC NANOCLUSTERS 2005, 205-227

9 13-atom Ni-Al alloy clusters: Correlation between structural and dynamical properties.: Krissinel E., Jellinek J.; CHEMICAL PHYSICS LETTERS 1997, 272, 301-312

12 Ultrafast photodissociation of K-n=3 ... 9 clusters.: Ruff A., Rutz S., Schreiber E., Woste L.; ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS 1996, 37, 175-180

14 The influence of CO on the surface plasmon absorption band of small silver clusters (D=20 angstrom):. Charle K., Konig L., Rabin I., Schulze W.; ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS 1996, 36, 159-162

15 Optical spectroscopy of size-selected silver clusters embedded in solid neon: A cluster-support interaction study.: Harbich W., Belyaev Y., Kleiber R., Buttet J.; SURFACE REVIEW AND LETTERS 1996, 3, 1147-1152

18 ELECTRONIC-STRUCTURE EFFECTS IN BIMETALLIC M(X)N CLUSTERS (M=ALKALI, N=DIVALENT METAL):. YERETZIAN C.; JOURNAL OF PHYSICAL CHEMISTRY 1995, 99, 123-130

1 Loss of Ag-3 moiety from clusters Ag-n(+) (n=4, 6, 8, 10, 12) upon collision induced dissociation.: Franski R., Gierczyk B., Kozik T.; INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011, 306, 91-94

2 Dissociation channels of silver bromide cluster Ag2Br, silver cluster Ag-3 and their ions studied by using alkali metal target.: Nagao H., Awazu K., Hayakawa S., Iwamoto K., Toyoda M., Ichihara T.; EUROPEAN PHYSICAL JOURNAL D 2007, 45, 279-287

4 Selective excitation of the OClO molecule with femtosecond laser pulse.: Yuan K., Sun Z., Cong S., Lou N.; PHYSICAL REVIEW A 2005, 72, 052513

43 BONACICKOUTECKY V., FANTUCCI P., FUCHS C., GATTI C., PITTNER J., POLEZZO S., AB-INITIO PREDICTIONS OF OPTICALLY ALLOWED TRANSITIONS IN NA-20 - NATURE OF EXCITATIONS AND INFLUENCE OF GEOMETRY.; CHEMICAL PHYSICS LETTERS 1993, 213, 522-526 IF 2012 = 2.145 (19 citation/12 bez autocitaci)

1 Theoretical Studies of Plasmonics using Electronic Structure Methods.: Morton S., Silverstein D., Jensen L.; CHEMICAL REVIEWS 2011, 111, 3962-3994

2 Structure of Isolated Clusters.: Blackman J.; METALLIC NANOPARTICLES 2009, 143-173

4 Electronic and Optical Properties of Simple Metal Clusters.: Alonso J.; STRUCTURE AND PROPERTIES OF ATOMIC NANOCENTERS 2005, 97-152

7 Global structure of small Na clusters in different approaches.: Spiegelmann F., Poteau R., Montag B., Reinhard P.; PHYSICS LETTERS A 1998, 242, 163-168

8 Ultrafast photodissociation of K-n=3 ... 9 clusters.: Ruff A., Rutz S., Schreiber E., Woste L.; ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS 1996, 37, 175-180

10 Ionic core effects on the Mie resonance in lithium clusters.: Yabana K., Bertsch G.; Zeitschrift Fur Physik D-Atoms Molecules and Clusters 1995, 32, 329-336

IF_{2012} = 2.771 (18 citaci/16 bez autocitaci)

1 A multireference perturbation study of the NN stretching frequency of trans-azobenzene in n pi* excitation and an implication for the photoisomerization mechanism.: Harabuchi Y., Ishii M., Nakayama A., Noro T., Taketsugu T.; Journal of Chemical Physics 2013, 138, 064305

3 E/Z Photochemical switches: syntheses, properties and applications.: Garcia-Iriepe C., Marazzi M., Frutos L., Sampedro D.; RSC Advances 2013, 3, 6241-6266

4 Ab initio non-adiabatic molecular dynamics.: Tapavizza E., Bellchambers G., Vincent J., Furchê F.; Physical Chemistry Chemical Physics 2013, 15, 18336-18348

7 Mimicking photoisomerisation of azo-materials by a force field switch derived from nonadiabatic ab initio simulations: Application to photoswitchable helical foldamers in solution.: Boeckmann M., Braun S., Deltsinis N., Marx D.; Journal of Chemical Physics 2013, 138, 084108

11 Sequential photoisomerisation dynamics of the push-pull azobenzene Disperse Red 1.: Bahrenburg J., Roettger K., Siewertsen R., Renth F., Temps F.; Photochemical & Photobiological Sciences 2012, 11, 1210-1219

1 Communication: Extension of a universal explicit electron correlation correction to general complete active spaces.: Haunschild R., Cheng L., Mukherjee D., Klopper W.; *JOURNAL OF CHEMICAL PHYSICS* 2013, 138, 211101

3 Multireference explicitly correlated F12 theories.: Shiozaki T., Werner H.; *MOLECULAR PHYSICS* 2013, 111, 607-630

4 Linear-scaling explicitly correlated treatment of solids: Periodic local MP2-F12 method.: Usvyat D.; *JOURNAL OF CHEMICAL PHYSICS* 2013, 139, 194101

6 On the large interelectronic distance behavior of the correlation factor for explicitly correlated wave functions.: Lesiuk M., Jeziorski B., Moszynski R.; *JOURNAL OF CHEMICAL PHYSICS* 2013, 139, 134102

7 Basis set converged weak interaction energies from conventional and explicitly correlated coupled-cluster approach.: Patkowski K.; *JOURNAL OF CHEMICAL PHYSICS* 2013, 138, 154101

8 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF COMPUTATIONAL CHEMISTRY* 2012, 33, 1285-1303

9 CAPTURING THE INTERELECTRON CUSP USING A GEMINAL LAYER ON AN UNCONSTRAINED SUM OF SLATER DETERMINANTS.: Mohlenkamp M.; *SIAM JOURNAL ON APPLIED MATHEMATICS* 2012, 72, 1742-1771

10 Canonical transcorrelated theory with projected Slater-type geminals.: Yanai T., Shiozaki T.; *JOURNAL OF CHEMICAL PHYSICS* 2012, 136, 084107

11 A universal explicit electron correlation correction applied to Mukherjee’s multi-reference perturbation theory.: Haunschild R., Mao S., Mukherjee D., Klopper W.; *CHEMICAL PHYSICS LETTERS* 2012, 531, 247-251

12 An explicitly correlated approach to basis set incompleteness in full configuration interaction quantum Monte Carlo.: Booth G., Cleland D., Alavi A., Tew D.; *JOURNAL OF CHEMICAL PHYSICS* 2012, 137, 164112

13 Explicitly Correlated Electrons in Molecules.: Haettig C., Klopper W., Koehn A., Tew D.; *CHEMICAL REVIEWS* 2012, 112, 4-74

46 Demel O., Bhaskaran-Nair K., Pittner J., Uncoupled multireference state-specific Mukherjee’s coupled cluster method with triexcitations.; *JOURNAL OF CHEMICAL PHYSICS* 2010, 133, 134106 IF$_{2012} = 3.164$ (18 citations/10 without self-citations)

1 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF COMPUTATIONAL CHEMISTRY* 2012, 33, 1285-1303

2 Unitary group adapted state-specific multi-reference coupled cluster theory: Formulation and pilot numerical applications.: Maitra R., Sinha D., Mukherjee D.; *JOURNAL OF CHEMICAL PHYSICS* 2012, 137, 024105

Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations.: Sinha D., Maitra R., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2012, 137, 094104

Inactive excitations in Mukherjee’s state-specific multireference coupled cluster theory treated with internal contraction: Development and applications.: Das S., Pathak S., Datta D., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 164104

The spin-free analogue of Mukherjee’s state-specific multireference coupled cluster theory.: Datta D., Mukherjee D.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 054122

Application of the uncoupled state-specific multireference coupled cluster method to a weakly bonded system: exploring the ground state Be-2: Mahapatra U., Chattopadhyay S.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2011, 44, 105102

Non-Born-Oppenheimer dynamics of the photoionized Zundel cation: A quantum wavepacket and surface-hopping study.: Li Z., Madjet M., Vendrell O.; JOURNAL OF CHEMICAL PHYSICS 2013, 138, 094313

Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects.: Madjet M., Li Z., Vendrell O.; JOURNAL OF CHEMICAL PHYSICS 2013, 138, 094311

On the unimolecular elimination of gas-phase iodine monobromide following excitation in the visible wavelength region.: Zhang D.; JOURNAL OF MATHEMATICAL CHEMISTRY 2010, 48, 424-438

Study of the Mechanism of the N-CO Photodissociation in N,N-Dimethylformamide by Direct Trajectory Surface Hopping Simulations.: Eckert-Maksic M., Antol I.; INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2009, 104, 458-467

A Hirshfeld interpretation of the charge, spin distribution, and polarity of the dipole moment of the open shell (3)Sigma(-) nitrogen halides: NF, NCl, and NB.: Harrison J.; JOURNAL OF CHEMICAL PHYSICS 2009, 131, 044117

Analysis of experimental feasibility of polar-molecule-based phase gates.: Kuznetsova E., Cote R., Kirby K., Yelin S.; PHYSICAL REVIEW A 2008, 78, 012313

Interpretation of the photoelectron spectra of superalkali species: Na3O and Na3O-: Zein S., Ortiz J.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 224305

Interpretation of the photoelectron spectra of superalkali species: Li3O and Li3O-: Zein S., Ortiz J.; JOURNAL OF CHEMICAL PHYSICS 2011, 135, 164307

1 Non-Born-Oppenheimer dynamics of the photoionized Zundel cation: A quantum wavepacket and surface-hopping study.: Li Z., Madjet M., Vendrell O.; JOURNAL OF CHEMICAL PHYSICS 2013, 138, 094313

2 Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects.: Madjet M., Li Z., Vendrell O.; JOURNAL OF CHEMICAL PHYSICS 2013, 138, 094311

4 On the unimolecular elimination of gas-phase iodine monobromide following excitation in the visible wavelength region.: Zhang D.; JOURNAL OF MATHEMATICAL CHEMISTRY 2010, 48, 424-438

5 Study of the Mechanism of the N-CO Photodissociation in N,N-Dimethylformamide by Direct Trajectory Surface Hopping Simulations.: Eckert-Maksic M., Antol I.; JOURNAL OF PHYSICAL CHEMISTRY A 2009, 113, 12582-12590

48 Kardahakis S., Pittner J., Carsky P., Mavridis A., Multireference configuration interaction and coupled-cluster calculations on the X-3 Sigma(-), a(1)Delta, and b(1)Sigma(+) states of the NF molecule.: INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2005, 104, 458-467

1 A Hirshfeld interpretation of the charge, spin distribution, and polarity of the dipole moment of the open shell (3)Sigma(-) nitrogen halides: NF, NCl, and NB.: Harrison J.; JOURNAL OF CHEMICAL PHYSICS 2009, 131, 044117

2 Analysis of experimental feasibility of polar-molecule-based phase gates.: Kuznetsova E., Cote R., Kirby K., Yelin S.; PHYSICAL REVIEW A 2008, 78, 012313

1 Interpretation of the photoelectron spectra of superalkali species: Na3O and Na3O-: Zein S., Ortiz J.; JOURNAL OF CHEMICAL PHYSICS 2012, 136, 224305

2 Interpretation of the photoelectron spectra of superalkali species: Li3O and Li3O-: Zein S., Ortiz J.; JOURNAL OF CHEMICAL PHYSICS 2011, 135, 164307
3 Structural transition in BanO clusters.: Chen G., Liu Z., Gong X.; PHYSICAL REVIEW B 2003, 67, 205415

4 Visible and near-infrared photoabsorption spectrum of Li3O: Resonance enhanced two-photon ionization spectroscopy and ab initio calculations.: Neukermans S., Janssens E., Tanaka H., Silverans R., Liewens P., Yokoyama K., Kudo H.; JOURNAL OF CHEMICAL PHYSICS 2003, 119, 7206-7213

5 The ab initio potential energy surface and vibrational-rotational energy levels of dilithium monoxide, Li2O.: Koput J., Peterson K.; JOURNAL OF CHEMICAL PHYSICS 2002, 116, 9255-9260

6 Two-step liquid drop model for binary, metal-rich clusters.: Despa F.; PHYSICS LETTERS A 2000, 276, 109-114

7 The influence of O and C doping on the ionization potentials of Li-clusters.: Despa F., Bouwen W., Vanhoutte F., Liewens P., Silverans R.; EUROPEAN PHYSICAL JOURNAL D 2000, 11, 403-411

9 Ionization energies of hyperlithiated and electronically segregated isomers of Li-n(OH)(n-1) (n=2-5) clusters.: Tanaka H., Yokoyama K., Kudo H.; JOURNAL OF CHEMICAL PHYSICS 1999, 113, 1821-1830

1 Bimetallic Clusters.: Alonso J.; STRUCTURE AND PROPERTIES OF ATOMIC NANOCLUSTERS 2005, 205-227

3 A study of electronic and bonding properties of Sn doped Li-n clusters and aluminum based binary clusters through electron localization function.: Shetty S., Pal S., Kanhere D.; JOURNAL OF CHEMICAL PHYSICS 2003, 118, 7288-7296

4 Comparative study of Aln-1X (n = 1-9 and 13, X = Li, Al and Sb) clusters: density functional theory based molecular dynamics simulation study.: Majumder C., Kulshreshtha S.; CHEMICAL PHYSICS LETTERS 2000, 323, 393-399

7 Ground-state geometries and stability of NanMg (n=1-12) clusters using ab initio molecular dynamics method.: Dhavale A., Kanhere D., Majumder C., Das G.; EUROPEAN PHYSICAL JOURNAL D 1999, 6, 495-500
Al10Li8: A magic compound cluster.: Kumar V., *PHYSICAL REVIEW B* 1999, **60**, 2916-2920

Many-dimensional potential surfaces: What they imply and how to think about them.: Berry R.; *INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY* 1996, **58**, 657-670

Stability of NanPb (n=7) clusters: A first-principles molecular-dynamics study.: Balbas L., Martins J.; *PHYSICAL REVIEW B* 1996, **54**, 2937-2941

Metal-metal coordination chemistry: Free clusters of group 11 elements with sodium.: Heiz U., Vayloyan A., Schumacher E.; *JOURNAL OF PHYSICAL CHEMISTRY* 1996, **100**, 15033-15040

Structural and dynamical properties of Cu-Au bimetallic clusters.: Lopez M., Marcos P., Alonso J.; *JOURNAL OF CHEMICAL PHYSICS* 1996, **104**, 1056-1066

Electronic-structure effects in bimetallic M(X)N clusters (M=alkali, N=divalent metal).: Yeretzian C.; *JOURNAL OF PHYSICAL CHEMISTRY* 1995, **99**, 123-130

On the electronic and geometric structure of bimetallic clusters - a comparison of the novel cluster Na6PB to Na6MG.: Albert K., Neyman K., Nasluzov V., Ruzankin S., Yeretzian C., Rosch N.; *CHEMICAL PHYSICS LETTERS* 1995, **245**, 671-678

Pittner J., Piecuch P., Method of moments for the continuous transition between the Brillouin-Wigner-type and Rayleigh-Schrodinger-type multireference coupled cluster theories.; *MOLECULAR PHYSICS* 2009, **107**, 1209-1221

IF_{2012} = 1.670 (15 citací/11 bez autocitací)

1 Bridging single and multireference coupled cluster theories with universal state selective formalism.: Bhaskaran-Nair K., Kowalski K.; *JOURNAL OF CHEMICAL PHYSICS* 2013, **138**, 204114

2 Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF COMPUTATIONAL CHEMISTRY* 2012, **33**, 1285-1303

3 Application of the uncoupled state-specific multireference coupled cluster method to a weakly bonded system: exploring the ground state Be-2.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS* 2011, **44**, 105102

4 Evaluation of the performance of single root multireference coupled cluster method for ground and excited states, and its application to geometry optimization.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF CHEMICAL PHYSICS* 2011, **134**, 044113

5 A universal state-selective approach to multireference coupled-cluster non-iterative corrections.: Kowalski K.; *JOURNAL OF CHEMICAL PHYSICS* 2011, **134**, 194107

6 Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; *JOURNAL OF CHEMICAL PHYSICS* 2010, **133**, 074102

7 Relativistic effects in atomic and molecular properties.: Ilias M., Kelloe V., Urban M.; *ACTA PHYSICA SLOVACA* 2010, **60**, 259-391

8 Multireference coupled-cluster Ansatz.: Jeziorski B.; *MOLECULAR PHYSICS* 2010, **108**, 3043-3054

9 Coupled cluster calculations: OVOS as an alternative avenue towards treating still larger molecules.: Neogrady P., Pitonak M., Granatier J., Urban M.; *RECENT PROGRESS IN COUPLED CLUSTER METHODS: THEORY AND APPLICATIONS* 2010, 429-454

10 A possibility for a multi-reference coupled-cluster: The MRexpT Ansatz.: Hanrath M.; *RECENT PROGRESS IN COUPLED CLUSTER METHODS: THEORY AND APPLICATIONS* 2010, 175-190
A coupled cluster approach with a hybrid treatment of connected triple excitations: Implementation and applications for open-shell systems.: Shen J., Kou Z., Xu E., Li S.; JOURNAL OF CHEMICAL PHYSICS 2010, 133, 234106

Hartmann M., Pittner J., Dam H., Bonacic-Koutecky V., Theoretical study of femtosecond pump-probe signals of nonstoichiometric alkali halide clusters.; EUROPEAN PHYSICAL JOURNAL D 1999, 9, 393-397 IF$_{2012} = 1.513$ (14 citaci/4 bez autocitaci)

Quantum Molecular Dynamics of the Topological Properties of the Electron Density: Charge Transfer in H-3(+) and LiF.: Chavez-Calvillo R., Hernandez-Trujillo J.; JOURNAL OF PHYSICAL CHEMISTRY A 2011, 115, 13036-13044

Theoretical analyses of the dynamics of excited states of small sodium fluoride aggregates.: Heitz M., Durand G., Spiegelman F., Meier C.; JOURNAL DE PHYSIQUE IV 2004, 119, 189-190

Coordination Chemistry at Carbon: The Patchwork Family Comprising (Ph3P)(2)C, (Ph3P)C(C2H4), and (C2H4)(2)C.: Schmidbaur H., Schier A.; ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 2013, 52, 176-186

Reactions of Vinylidenecyclopropanes with Diphenyl Diselenide in the Presence of AIBN and Thermally-Induced Further Transformations.: Yuan W., Wei Y., Shi M., Li Y.; CHEMISTRY-A EUROPEAN JOURNAL 2012, 18, 1280-1285

Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes.: Mahapatra U., Chattopadhyay S.; JOURNAL OF COMPUTATIONAL CHEMISTRY 2012, 33, 1285-1303

The chemistry of localized singlet 1,3-diradicals (biradicals): from putative intermediates to persistent species and unusual molecules with a pi-single bonded character.: Abe M., Ye J., Mishima M.; CHEMICAL SOCIETY REVIEWS 2012, 41, 3808-3820

Application of the uncoupled state-specific multireference coupled cluster method to a weakly bonded system: exploring the ground state Be-2.: Mahapatra U., Chattopadhyay S.; JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 2011, 44, 105102

Potential energy surface studies via a single root multireference coupled cluster theory.: Mahapatra U., Chattopadhyay S.; JOURNAL OF CHEMICAL PHYSICS 2011, 134, 044113

Multireference Character of 1,3-Dipolar Cycloaddition of Ozone with Ethylene and Acrylonitrile.: Saito T., Nishihara S., Kataoka Y., Nakanishi Y., Kitagawa Y., Kawakami T., Yamanaka S., Okumura M., Yamaguchi K.; JOURNAL OF PHYSICAL CHEMISTRY A 2010, 114, 12116-12123
54 Deutsch H., Pittner J., Bonacic-Koutecky V., Becker K., Matt S., Mark T., Theoretical determination of the absolute electron impact ionization cross-section function for silver clusters Ag-n (n=2-7).: *JOURNAL OF CHEMICAL PHYSICS* 1999, 111, 1964-1971 *IF* 2012 = 3.164 (13 citaci/7 bez autocitaci)

3 Theoretical total ionization cross-sections for electron impact on atomic and molecular halogens.: Joshipura K., Limbachiya C., *INTERNATIONAL JOURNAL OF MASS SPECTROMETRY* 2002, 216, 239-247

3 Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.: Shen J., Piecuch P., *JOURNAL OF CHEMICAL THEORY AND COMPUTATION* 2012, 8, 4968-4988

2 A fusion of the closed-shell coupled cluster singles and doubles method and valence-bond theory for bond breaking.: Small D., Head-Gordon M., *JOURNAL OF CHEMICAL PHYSICS* 2012, 137, 114103

1 Communication: Spin-free quantum computational simulations and symmetry adapted states.: Whitfield J.; JOURNAL OF CHEMICAL PHYSICS 2013, 139, 021105

5 Quantum circuit design for solving linear systems of equations.: Cao Y., Daskin A., Frankel S., Kais S.; MOLECULAR PHYSICS 2012, 110, 1675-1680

6 Universal programmable quantum circuit schemes to emulate an operator.: Daskin A., Grama A., Kollias G., Kais S.; JOURNAL OF CHEMICAL PHYSICS 2012, 137, 234112

8 Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance.: Li Z., Yung M., Chen H., Lu D., Whitfield J., Peng X., Aspuru-Guzik A., Du J.; SCIENTIFIC REPORTS 2011, 1, 88

1 State specific multireference Moller-Plesset perturbation theory: A few applications to ground, excited and ionized states.: Chattopadhyay S., Mahapatra U., Chaudhuri R.; CHEMICAL PHYSICS 2012, 401, 15-26

1 Communication: Extension of a universal explicit electron correlation correction to general complete active spaces.: Haunschild R., Cheng L., Mukherjee D., Klopper W.; JOURNAL OF CHEMICAL PHYSICS 2013, 138, 211101

5 Theoretical Chemistry.: Neugebauer J., Hanrath M., Mitric R.; NACHRICHTEN AUS DER CHEMIE 2013, 61, 320-329

61 Veis L., Carsky P., Pittner J., Michl J., COUPLED CLUSTER STUDY OF POLYCYPLOPENTANES: STRUCTURE AND PROPERTIES OF C5H2n, n=0-4.; COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2008, 73, 1525-1551 IF2008 = 0.550 (7 citací/0 bez autocitací)

64 BonacicKoutecky V., Pittner J., Koutecky J., Ab-initio study of optical response properties of nonstoichiometric lithium-hydride and sodium-fluoride clusters with one- and two-excess electrons.; ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS 1997, 40, 441-444 IF = 1.376 (6 citací/1 bez autocitací)

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>IF 2012</th>
<th>Citations</th>
<th>Autocitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>an application to the autoaromatisation of hex-3-ene-1,5-diyne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(the Bergman reaction).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Theoretical perturbation theory for state-specific multireference</td>
<td>Evangelista F., Simmonnett A., Schaefer H., Mukherjee D., Allen W.,</td>
<td>PHYSICAL CHEMISTRY CHEMICAL PHYSICS</td>
<td>2009</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coupled cluster methods.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Bergman cyclizations of the enediyne and its N-substituted analogs</td>
<td>Dong H., Chen B., Huang M., Lindh R.,</td>
<td>JOURNAL OF COMPUTATIONAL CHEMISTRY</td>
<td>2012</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>using multiconfigurational second-order perturbation theory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for the averaged loss-gain strategies of fast electronic deactivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in 1,1-difluoroethylene.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric phase effects in the coherent control of the branching</td>
<td>Abe M., Ohtsuki Y., Fujimura Y., Lan Z., Domcke W.,</td>
<td>JOURNAL OF CHEMICAL PHYSICS</td>
<td>2006</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ratio of photodissociation products of phenol.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRILLOUIN-WIGNER METHODS FOR MANY-BODY SYSTEMS.</td>
<td>Hubac I., Wilson S.,</td>
<td>BRILLOUIN-WIGNER METHODS FOR MANY-BODY SYSTEMS</td>
<td>2010</td>
<td>133</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzyne.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singlet and Triplet Excited-State Dynamics Study of the Keto and</td>
<td>Mai S., Marquetand P., Richter M., Gonzalez-Vazquez J., Gonzalez L.,</td>
<td>CHEMPHYSCHEM</td>
<td>2013</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enol Tautomers of Cytosine.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronic decoherence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration interaction investigation including spin-orbit</td>
<td>Li R., Wei C., Sun Q., Sun E., Jin M., Xu H., Yan B.,</td>
<td>JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER</td>
<td>2014</td>
<td>133</td>
<td>271-280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coupling effect for electronic states of IBr and its cation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoelectron spectroscopy of small IBr-(CO2)(n), (n=0-3) cluster</td>
<td>Sheps L., Miller E., Lineberger W.,</td>
<td>JOURNAL OF CHEMICAL PHYSICS</td>
<td>2009</td>
<td>131</td>
<td>64304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab initio investigation of potential energy curves of the 23</td>
<td>Patchkovskii S.,</td>
<td>PHYSICAL CHEMISTRY CHEMICAL PHYSICS</td>
<td>2006</td>
<td>8</td>
<td>926-940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronic states of IBr correlating to neutral P-2 atoms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simsa D., Demel O., Bhaskaran-Nair K., Hubac I., Mach P., Pittner J., Multireference coupled cluster study of the oxyallyl diradical.; CHEMICAL PHYSICS 2012, 401, 203-207 IF$_{2012} = 2.059$ (3 citaci/2 bez autocitaci)

Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: An ab initio study of time-resolved photoelectron spectra.: Varella M., Arasaki Y., Ushiyama H., Takatsuka K., Wang K., McCoy V.; JOURNAL OF CHEMICAL PHYSICS 2007, 126, 054303

Theoretical exploration of ultrafast spectroscopy of small clusters.: INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2001, 84, 714-739 IF$_{2012} = 1.306$ (3 citaci/3 bez autocitaci)

Electric multipole plasmons in deformed sodium clusters.: Kleinig W., Nesterenko V., Reinhard P.; ANNALS OF PHYSICS 2002, 297, 1-26

Landau fragmentation and deformation effects in dipole response of sodium clusters.: Nesterenko V., Kleinig W., Reinhard P.; EUROPEAN PHYSICAL JOURNAL D 2002, 19, 57-64

BONACICKOUTECKY V., FUCHS C., PITTNER J., KOUTECKY J., THEORETICAL INTERPRETATION OF OPTICAL-RESPONSE PROPERTIES OF SIMPLE METAL-CLUSTERS.; BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS 1992, 96, 1262-1270 IF$_{1992} = 1.142$ (3 citaci/2 bez autocitaci)

PHYSICOCHEMICAL PROPERTIES OF SMALL METAL PARTICLES IN SOLUTION - MICROLELECTRO REACTIONS, CHEMISORPTION, COMPOSITE METAL PARTICLES, AND THE ATOM-TO-METAL TRANSITION.: HENGLEIN A.; JOURNAL OF PHYSICAL CHEMISTRY 1993, 97, 5457-5471

A study of the ionisation and excitation energies of core electrons using a unitary group adapted state universal approach.: Sen S., Shee A., Mukherjee D.; MOLECULAR PHYSICS 2013, 111, 2625-2639

1 Universal programmable quantum circuit schemes to emulate an operator.; Daskin A., Grama A., Kollias G., Kais S.; Journal of Chemical Physics 2012, 137, 234112

78 Bonacic-Koutecky V., Mitric R., Burgel C., Noack H., Hartmann M., Pittner J., Tailoring the chemical reactivity and optical properties of clusters by size, structures and lasers.; European Physical Journal D 2005, 34, 113-118 IF_{2012} = 1.513 (2 citaci/0 bez autocitaci)

1 Quantum optimal control theory.; Werschnik J., Gross E.; Journal of Physics B: Atomic Molecular and Optical Physics 2007, 40, R175-R211

82 Demel O., Kedzuch S., Noga J., Pittner J., Perturbative triples correction for explicitly correlated Mukherjee’s state-specific coupled cluster method.; Molecular Physics 2013, 111, 2477-2488 IF_{2012} = 1.670 0 citaci/0 bez autocitaci