
Density functional theory 
Traditional ab initio:  finding the N-electron wavefuntion Ψ(1,2,…,N) depending on 4N coord. 
DFT:  finding the total electron spin-densities depending on 8 coordinates 

Hohenberg & Kohn: 
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Hohenberg-Kohn functional: 

Kinetic energy of electron 
Coulomb repulsion 
Non-classical interaction 
  (self-interaction, exchange, and 
  correlation) 

All properties (defined by Vext) are determined by the ground state density 
H&K only proofed that FHK exist, however, we do not know it 
H&K do not give a direction how can we find density 
H&K theorems allow us to construct the rigorous many-body theory using density as a 
        fundamental properties 
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An old Thomas-Fermi-Dirac model is a DFT model with approximate xc functional  



Thomas-Fermi Model  
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Thomas-Fermi-Dirac equation 
Solution – variational principle; adding the constraint of a fixed number of electrons 
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Thomas-Fermi kinetic energy (Ck=2.871 a.u.) 

Dirac (1930) exchange (CX=0.739 a.u.) 
=> Thomas-Fermi-Dirac model (TFD) 
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Local approximation to homogeneous electron gas 
Wigner (1938) 
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Correlation 
potential Rigorously proved that molecules are less stable than their fragments ! 

Main problem comes from kinetic energy description. 



Thomas-Fermi 
Type Models 

Kohn-Sham 
Type Models 

TTF replaced by more realistic evaluation for one-electron orbitals 
=> Iterative solution 

Introducing the reference system of non-interacting electrons 
=> Requires reference potential VS 

Significant improvement => describes chemical bond! 



Kohn-Sham Approach 

Adopting a better expression for kinetic energy: 
Using exact kinetic energy of the non-interacting reference system that has 

the same density as a real one. 
Such kinetic energy cannot be the same as a true one; it is expected to be 

close. 
Residual part of kinetic energy (TC) is shifted to the functional. 
 
 
 
Kohn-Sham functional is then: 
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Kinetic energy 
of non-interacting 
reference system 

Coulomb repulsion 
of uncorrelated 
densities 

Exchange-correlation functional 
Includes:  
Electron exchange 
Electron correlation 
Residual part of kinetic en. 

HK theorems 
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Contains all problematic terms 
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Putting things together: 

Applying 
vatiational 
principle 
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Satisfying the conditions stated 
for non-interacting reference system 

∑∫ −+
ρ

=≡
M

A A1

A
1XC2

12

2
effS r

Z
)r(Vrd

r
)r(

)r(V)r(V 





Iterative solution. 
What is VXC ? δρ

δ
≡ XC

XC
EV

If VXC is know 
=> Exact theory 



Kohn-Sham vs. Hartree-Fock 

1. SIC problem not present in HF (Jii=Kii). 
2. Effective KS potential VKS includes also elektron correlation. 
3. Wave function in the form of Slater determinant is an exact wave function for the KS reference 

system (definition). It is not an exact wave function of the true interacting system. Exact wave 
function is not known (HK theorems). 

Density can expressed from one-electron functions constituting single SD: 
YES – non-interacting pure-state-VS representable 
NO   - non-interacting enesmbe-VS representable  => Problem ! 
(TS – mostly not pure-state-VS representable; shown for exact wf) 

4. Slater determinant in HF is not exact wave function – it is only a consequence of model of 
independent electrons. 

5. HF vs. KS orbitals. 
6. Koopman’s theorem does not hold for KS orbitals. 
7. Janak’s theorem valid for KS: negative of HOMO energy corresponds to 1st ionization potential. 
8. VS is local => VXC must be local ! Contrary to Veff(HF) that is non-local. 
9. KS equation formally less complicated that HF equation, nevertheless, they are (in principle) 

exact. 
10. Unrestricted formulation. 
11. Improving the HF description => accounting for electron correlation: systematic way. 

Improving the approximate Vks (EXC)? 
12. Reliability for small/large systems. 
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Single SD based density: 
Spin or spatial degeneracy (most atoms) => approximate xc functionals have problem ! 



Size-consistency problem ! 



Kohn-Sham vs. Hartree-Fock 

1. SIC problem not present in HF (Jii=Kii). 
2. Effective KS potential VKS includes also elektron correlation. 
3. Wave function in the form of Slater determinant is an exact wave function for the KS reference 

system (definition). It is not an exact wave function of the true interacting system. Exact wave 
function is not known (HK theorems). 

Density can expressed from one-electron functions constituting single SD: 
YES – non-interacting pure-state-VS representable 
NO   - non-interacting enesmbe-VS representable  => Problem ! 
(TS – mostly not pure-state-VS representable; shown for exact wf) 

4. Slater determinant in HF is not exact wave function – it is only a consequence of model of 
independent electrons. 

5. HF vs. KS orbitals. 
6. Koopman’s theorem does not hold for KS orbitals. 
7. Janak’s theorem valid for KS: negative of HOMO energy corresponds to 1st ionization potential. 
8. VS is local => VXC must be local ! Contrary to Veff(HF) that is non-local. 
9. KS equation formally less complicated that HF equation, nevertheless, they are (in principle) 

exact. 
10. Unrestricted formulation. 
11. Improving the HF description => accounting for electron correlation: systematic way. 

Improving the approximate Vks (EXC)? 
12. Reliability for small/large systems. 
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Non-interacting reference system 
Kohn-Sham orbitals 

Hybrid functionals 
B3LYP, B3PW91,... 

Local density approximation 
LDA (LSD, SVWN) 
 

Hartree-Fock method 
φi(1) … HF orbitals 
 
 
 
Electron correlation neglected 

MP2 

CCSD(T) 

Non-relativistic Hamiltonian 
Born-Oppenheimer approximaion 
Electron Density 
 
One-el. Functions 

Generalized gradient  
approximation (GGA) 
 
PW91, BP86, BLYP, PBE,... 
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Approximate Exchange-Correlation Functionals 

Kohn-Sham equations 
(general, does not depend 
on the form of particular 
funtional) 

Local Density Approximation 
EXC components derived from the uniform electron gas 
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PZ (Perdew-Zunger, 1981) 
VWN(1-5) (Vosk et al., 1980) 
=> Fit to QMC densities 

Constant from QMC fit 
High- and low-densities 



LDA uses for EXC expressions from UEG – is this acceptable for molecules? 

LDA works better than expected - hXC satisfied most of the rules. 
LDA holes are reasonable for small distances between reference and the other electon. 
LDA holes are problematic mostly at the regions with highly anisotropic density (atoms). 



Trends within the LDA/LSDA 
 
• It favours electronic densities that are more homogeneous than the exact ones (exchange hole is 
spherically symmetrical) 
• (Consequently) it overestimates the binding in molecules. 
• (Consequently) it gives too short bond lengths. 
• It does not account for dispersion interaction, nevertheless it can still bind van der Waals complesxes; 
for a wrong reason! 
⇒ Number of applications, in particular in physics 
Untill today used for metals, graphite, or even weakly bounded molecular crystals. 

General limitations of LDA 

1. Poor densities in a core region. (Insufficient cancellation of self-interaction in localized dense core. 
2. Too high atomic energies (higher than HF and experiment). 
3. Incorrect decay of exchange-correlation potential – exponential (as the density) while it should be 

 Problematic for all finite systems, including surfaces. 
4. Fails to describe negatively charged ions (due to too fast decay). 
5. H-bonds poorly described. 
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Possible improvments 
(i) Considering inhomogeneous densities. 
(ii) Improving the self-interaction problem. 
(iii) Accounting for non-local exchange and correlation. 

GGA, hybrid, meta- functionals 



Generalized Gradient Approximation: (GGA) 
EXC depends not only on density but also on the density gradients 
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Particular forms of GGA functionals should be rather viewed as mathematical concept 

Reduced density gradient 
(local inhomogeneity) 

Example: EX derived by Becke … B (=B88) 
   β=0.0042 (empirical) 
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Denominator makes GGA 
correction important also for 
region with small density 
(extended valence region) 
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Example: EX derived by Perdew 
… P86 
   parameter free 



Hybrid Density Functionals:  
HF exchange is mixed into the functional form 
 
Example: B3PW91 (Becke) 
a, b, and c - fitted parameters 

3 0 91( )B LSD LSD B PW
XC XC XC X X CE E a E E bE cEλ== + − + +

PBE – Perdew, Burke, Ernzerhof 
Functional that satisfies most of the conditions required (boundary conditions, properties of holes) 

Meta-GGA 
Considering the fourth order gradient expansion – includes second derivatives of densities (“kinetic 
energy density”) 
TPSS 

OEP – “Optimized effective potential methods” 
Includes the exact exchange – no need for hX, only hC constracted 

Non-local functionals: 
vdW-DF1    van der Waals density functional (Dion, Rydberg, Schroder, Langreth, Lundqvist, 2004) 
vdW-DF2    improved long-range assymptote 
Román-Pérez & Soler – efficient implementation – reciprocal space – N2 speeds up to NlogN 
 
 



vdW-DF:   DF1 vs. DF2 





Several most commonly used functionals
Abbreviation Type Exchange

part
Correlati
on part

Authors

S LDA + - Slater (Dirac)

VWN LDA - + Vosko, Wilk, Nusair (1980)

B, B88 GGA + - Becke (1988)

LYP GGA - + Lee, Young, Parr (1988)

PW91 GGA + + Perdew, Wang (1992)

P86 (P) GGA - + Perdew (1986)

PBE GGA + + Perdew, Burke, Ernzerhof (1996)

B3 Hybrid + - Becke
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4.5 Thermochemie 

Einfluss von Gradientenkorrekturfunktionalen auf  die Dichte im F2 

ρMP2-ρHF 

ρSVWN-ρSLYP ρSVWN-ρBVWN 

Isopyknen bei 0.002 e- 

ρSVWN-ρBLYP 

ρMP2-ρBLYP ρSVWN-ρHF 



Dipole moments for selected molecules [in D, 1 D = 0.3934 a.u.]

Molecule HF

POLa

MP2

POLa

SVWN

numericalb

SVWN

TZVP-FIPc

BLYP

TZVP-FIPc

BLYP

POLa

BLYP

6-31G(d)d

B3LYP

cc-pVTZ

B3LYP

POLa

Exp.

CO -0.25 0.31 0.23 0.24 0.19 0.19 0.15 0.13 0.10 0.11

H2O 1.98 1.85  1.86 1.88 1.83 1.80  2.04 1.92 1.86 1.85

H2S  1.11  1.03  1.15 1.07 0.97 1.19 1.01 0.97

HF 1.92 1.80 1.80 1.81 1.76 1.75 1.81 1.83 1.80 1.83

HCl 1.21 1.14 1.08 1.21 1.12 1.11

NH3 1.62 1.52 1.53 1.57 1.52 1.48 1.90 1.59 1.52 1.47

PH3 0.71 0.62 0.59 0.53 0.62 0.57

SO2 1.99 1.54 1.57 2.01 1.67 1.63

a taken from Cohen and Tantirungrotechai, 1999;b taken from Dickson and Becke, 1996 c taken from Calaminici, Jug and Köster, 1998,d taken from

Johnson, Gill and Pople, 1993

Barrier heights of H2 + H → H + H2 [in kcal/mol]

Method barrier without SIC barrier with SIC

LSD -2.3 5.7

BLYP 2.9 12.6

BPW91 4.7 14.3

B3LYP 4.1 11.1

exp. 9.7

Taken from Johnson, 1995 and Csonka and Johnson, 1998



SIC 



Compilation of mean absolute deviations for bond lengths [Å] / bond angles [degrees] for

small main group molecules from different sources.

32 first row species, 6-31G(d) basis set, Johnson, Gill, and Pople, 1993

HF 0.020 / 2.0 SVWN 0.021 / 1.9

MP2 0.014 / 1.8 BLYP 0.020 / 2.3

QCISD 0.013 / 1.8

13 species, Martin, El-Yazal, and François, 1995a

CCSD(T)/cc-pVDZ 0.018 / 2.2 B3LYP/cc-pVDZ 0.009 / 1.7

CCSD(T)/cc-pVTZ 0.014 / 0.6 B3LYP/cc-pVTZ 0.004 / 0.3

CCSD(T)/cc-pVQZ 0.002 / 0.4 B3LYP/cc-pVQZ 0.004 / 0.3

40 species cont. third row elements, 6-31G(d) basis set, Redfern, Blaudeau and Curtiss, 1997

MP2 0.022 / 0.4 B3LYP 0.030 / 0.5

BLYP 0.048 / 1.0 B3PW91 0.020 / 0.5

BPW91 0.020 / 0.5

a uncontracted aug-cc-pVTZ basis



Deviations between computed atomization energies and experiment for the JGP test set

employing the 6-31G(d) basis set [in kcal/mol]. Taken from Johnson, Gill and Pople,

1993.

HF MP2 QCISD SVWN SLYP BVWN BLYP

mean abs. dev.a  86  22  29 36 (40)a 38 4 (4)a 6

mean dev. -86 -22 -29 36 (40)a 38 0 (4)a 1
a Basis set free results taken from Becke, 1992.
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