Density functional theory

Traditional ab initio: finding the N-electron wavefuntion ¥(1,2,...,N) depending on 4N coord.
DFT: finding the total electron spin-densities depending on 8 coordinates

Hohenberg & Kohn:

Eo[ o] = [ o (FV0F + T[]+ E. [ 0]

iy T ta—— Kinetic energy of electron
Hohenberg-Kohn functional: | \on_classical interaction
E,[0,]= _[Po(r)VNedr +F. o] (self-interaction, exchange, and
correlation)

All properties (defined by V,,,) are determined by the ground state density
H&K only proofed that F, exist, however, we do not know it
H&K do not give a direction how can we find density

H&K theorems allow us to construct the rigorous many-body theory using density as a
fundamental properties

Flpo(F)]=TLp(r)]+I[p(F)]+E,[o(F)]

An old Thomas-Fermi-Dirac model is a DFT model with approximate xc functional



Thomas-Fermi Model

Toe[p(F)] === (%) [ (P

Thomas-Fermi kinetic energy (C,=2.871 a.u.)

_ 3(3 13 o ] _
Ex[p(r)]:_z(_j jp“(r)dr Dirac (1930) exchange (C4=0.739 a.u.)

4 => Thomas-Fermi-Dirac model (TFD)

E [ 5(F)] = —0.056 P () e Local approximation to homogeneous electron gas
=pl=—0 J0.079+p“3(r) | Wigner (1938)

= |Ewol=C, [ o700 - [ o), (Pr + [ [ 2L, —c, [ o () + £ [o(r)

Thomas-Fermi-Dirac equation
Solution — variational principle; adding the constraint of a fixed number of electrons
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Thomas-Fermi
Type Models

T+ replaced by more realistic evaluation for one-electron orbitals
=> |terative solution

Introducing the reference system of non-interacting electrons
=> Requires reference potential V¢

\/ Significant improvement => describes chemical bond!

Kohn-Svham
Type Models




Kohn-Sham Approach

Adopting a better expression for kinetic energy: 1N
g vt kit e =330l
Using exact kinetic energy of the non-interacting reference system thathas s =5 —~\ 7 .
the same density as a real one.
Such kinetic energy cannot be the same as a true one; it is expected to be Ts#T
close.
Residual part of kinetic energy (T) is shifted to the functional.

Ewc[p1= (TIp] - Ts[pl)+ (E.[p]-J[p]) = Te[pl + E o lp]

Kohn-Sham functional is then: Fip(F)]=Ts[p(F)1+I[p(F)]+ Exc[p()]

_—/

Kinetic energy Coulomb repulsion
of non-interacting of uncorrelated
reference system densities

A 4

Exchange-correlation functional

E, = min (F[p]+ [ p(F)Vy.dF Includes:
HK theorems { i PN ( ~ j #N ) - Electron exchange
FIp(F)] = Tlp(F)]+ I[p(F)] + E o [p(F)] Electron correlation

Residual part of Kinetic en.




E[p(F)]= Ts[p]+J[p]+ Exc[p]+E . [p]

=T. [p]+1”M didF, + E o [p]+ [ Viop(F)dT
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Contains all problematic terms

Satisfying the conditions stated

for non-interacting reference system

. S [ . 9 Z
Vo) = Vi (=22, 1 v, (0) - 5 2
A T1A
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Iterative solution.

‘ What is V. ?

If Vyc is know
=> Exact theory

i
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Kohn-Sham vs. Hartree-Fock
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SIC problem not present in HF (J;=K;)).
Effective KS potential Vg includes also elektron correlation.
Wave function in the form of Slater determinant is an exact wave function for the KS reference
system (definition). It is not an exact wave function of the true interacting system. Exact wave
function is not known (HK theorems).
Density can expressed from one-electron functions constituting single SD:

YES — non-interacting pure-state-Vg representable

NO - non-interacting enesmbe-V. representable => Problem !

(TS — mostly not pure-state-V¢ representable; shown for exact wf)
Slater determinant in HF is not exact wave function — it is only a consequence of model of
independent electrons.
HF vs. KS orbitals.
Koopman’s theorem does not hold for KS orbitals.
Janak’s theorem valid for KS: negative of HOMO energy corresponds to 1%t ionization potential.
Vs is local => V. must be local ! Contrary to \V*(HF) that is non-local.
KS equation formally less complicated that HF equation, nevertheless, they are (in principle)
exact.
Unrestricted formulation.
Improving the HF description => accounting for electron correlation: systematic way.
Improving the approximate V., (Exc)?

Reliability for small/large systems. -
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Single SD based density:
Spin or spatial degeneracy (most atoms) => approximate xc functionals have problem !

(dyey2) dy,) (d,2) d,,) )

-759.89885 -759.89885 -759.89826 -759.89885 -759.89885

Figure 5-2. Isodensity surfaces (0.001 a.u.) of the d'-densities generated from integral orbital occupation of the
five d-orbitals in Sc** by one electron in a DFT calculation. The shape of the density resulting from occupation of
the d,.-orbital differs from the other four (which are identical to each other except for their orientation in space)
and a slightly different total energy (given in a.u.) is assigned to this particular density.
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Relative Energy

Size-consistency problem

Figure 5-3. The symmetry dilemma in present-day DFT: starting from the cylindrically symmetric molecular 7-
density (a), the dissociation into atomic fragments can either be computed with correct atomic densities but a
wrong energy (b) or a correct energy, but wrong (because symmetry broken) atomic densities (c) (isodensity

surfaces at 0.01 a.u. constructed from the p-orbital space; adapted from Savin in Recent Developments of Modern
Density Functional Theory, Seminario, J. M. (ed.), 1996, with permission from Elsevier Science).
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Stationary Schrodinger equation

HY =EY

CCSD(T) “

Non-relativistic Hamiltonian
Born-Oppenheimer approximaion

Hybrid functionals

Electron Density ¢y = 3l (1) B3LYP, B3PWOL, ...
MP2 i :
One-el. Functions  ¢,(1)=> ¢, 7,1
Electron Generalized gradient
correlation approximation (GGA)
E=E[p,Vp]

PWO91, BP86, BLYP, PBE,...

Expansion over Slater det. raditional

®:COTO+CSTS +CDlPD+"' Ab initio DFT

< »

1

Post-HF l_ll)/ello_dglt_)fir:/dgp_endentelectrons Non-interacting reference system
methods ("J)=iz ) Kohn-Sham orbitals

Hartree-Fock method
¢i(1) ... HF orbitals

Local density approximation
LDA (LSD, SVWN)

\P(l,2,...,n)=%det|¢l(l)¢2(2)...gon(n)| ey
! =E[p

Electron correlation neglected




Approximate Exchange-Correlation Functionals

Kohn-Sham equations
(general, does not depend (_lvz +V,, (ﬁ)) 0 =c0
on the form of particular 2

funtional)
. - p(T,) Z OE
V5 (F) =V (F) = [ 22T, + Vo (1) - Z—A vV, =2ox
12 op
Local Density Approximation
Ec components derived from the uniform electron gas
E [Pl = jp(r)axC (p(T)) dF exc ... €xchange-correlation energy per particle of UEG

gxc(P(F)) = & (p(T)) + £ (p(T)) Splitting into exchange and correlation part (T neglected)

3 [3 p(F) 2 Alnrg+B+CrgInrg + Drg, 1 <1 Constant from QMC fit
= —— E = - .
ex[p] ,/ _ c Lp P11+ BT + Bt )t >1 High- and low-densities

S ... used by Slater PZ (Perdew-Zunger, 1981)

([5irac, 1930) VWN(1-5) (Vosk et al., 1980)
=> Fit to QMC densities



LDA uses for Ey expressions from UEG - is this acceptable for molecules?

fronem (nfoumoge neosis
systam

v e (Pl )
g (PR )

S Ronmogeneous
alsctron gas

Exe [pl = N[pn:r] £, (p(E ) dF

Figure &-2. The local density approximaticn.

LDA works better than expected - hy satisfied most of the rules.
LDA holes are reasonable for small distances between reference and the other electon.
LDA holes are problematic mostly at the regions with highly anisotropic density (atoms).



Trends within the LDA/LSDA

« It favours electronic densities that are more homogeneous than the exact ones (exchange hole is
spherically symmetrical)

* (Consequently) it overestimates the binding in molecules.

* (Consequently) it gives too short bond lengths.

* It does not account for dispersion interaction, nevertheless it can still bind van der Waals complesxes;

for a wrong reason!
= Number of applications, in particular in physics

Untill today used for metals, graphite, or even weakly bounded molecular crystals.

General limitations of LDA

1. Poor densities in a core region. (Insufficient cancellation of self-interaction in localized dense core.

2. Too high atomic energies (higher than HF and experiment). )

3. Incorrect decay of exchange-correlation potential — exponential (as the density) while it should be _&
Problematic for all finite systems, including surfaces. '

4. Fails to describe negatively charged ions (due to too fast decay).

5. H-bonds poorly described.

Possible improvments

(i) Considering inhomogeneous densities.

(i) Improving the self-interaction problem.

(iii) Accounting for non-local exchange and correlation.

>  GGA, hybrid, meta- functionals



Generalized Gradient Approximation: (GGA)
E,c depends not only on density but also on the density gradients

EGGA

o, 0s]= If(pa,pﬁ,vpa,vpﬂ) dr

Particular forms of GGA functionals should be rather viewed as mathematical concept

EGGA ELSD ZIF(S ) ,04/3(I’) dr s (F) = |V,Z§(r)|
(F) Denominator makes GGA
correction important also for
Reduced density gradient region with small density
(local inhomogeneity) (extended valence region)
Example: Ey derived by Becke ... B (=B88) £B _ ,33(2,
B=0.0042 (empirical) 14 63s. sinh™® S

Example: E, derived by Perdew 3 2 s 4 A 6 \1/15
P86 FP® =11+1.296 —1,3 +14 ——=—— | +0.2 —=—
(24°) (247 (2417)

parameter free



PBE - Perdew, Burke, Ernzerhof
Functional that satisfies most of the conditions required (boundary conditions, properties of holes)

Meta-GGA
Considering the fourth order gradient expansion — includes second derivatives of densities (“kinetic

energy density”)
TPSS

OEP - “Optimized effective potential methods”
Includes the exact exchange — no need for hy, only h. constracted

Hybrid Density Functionals:
HF exchange is mixed into the functional form

Example: B3PW91 (Becke) Exd =Exe +a(Ejc —Ex")+bE; +cE™
a, b, and c - fitted parameters

Non-local functionals:
vdW-DF1 van der Waals density functional (Dion, Rydberg, Schroder, Langreth, Lundqvist, 2004)

vdW-DF2 improved long-range assymptote
Roman-Pérez & Soler — efficient implementation — reciprocal space — N2 speeds up to NlogN




vdW-DF: DF1 vs. DF2

LEE er al. PHYSICAL REVIEW B 82, 081101(R) (2010)
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FIG. 1. (Color online) PECs for the best and the worst case of (a) hydrogen-bonded, (b) dispersion-dominated, and (c) mixed duplexes.
CCSDI(T) QC PECs (dashed-dotted lines with circles taken from Ref. 33) and the reference energies (cross marks taken from Ref. 32) at the

geometry of Ref. 31 are also shown. The shapes near minima are compared in inset figures where PECs are aligned to have the common
minimum point. For all the other S22 duplexes, see supplementary material.
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Figure 1. Differences in interaction energies for vdW-DF

( Ei[DFT]) with various exchange functionals from the CCSIXT)
reference data { E;y ( ACCSD(T))) [13]. We show data for revPBE,

B85, PBE. B86 and three new exchange functionals ‘PBEx = 17,

‘optPBE’, and ‘optBEE’.




Several most commonly used functionals

Abbreviation Type Exchange Correlati Authors
part on part
S L DA + - Slater (Dirac)

VWN LDA - + Vosko, Wilk, Nusair (1980)
B, B88 GGA + - Becke (1988)

LYP GGA - + Lee, Young, Parr (1988)
PWO91 GGA + + Perdew, Wang (1992)
P86 (p) GGA - + Perdew (1986)

PBE GGA + + Perdew, Burke, Ernzerhof (1996)

B3 Hybrid + - Becke




4.5 Thermochemie

Einfluss von Gradientenkorrekturfunktionalen auf die Dichte im F,

Pap2-Prr Psvwn-PLEF Pwyp2-PBLYP

Isopyknen bei 0.002 e

PsvwN-PBvwN PsvwN-Psryp PsvwN-PBLYP

Theoretische Chemie 111 Dr. Max Holthausen



Dipole moments for selected molecules [in D, 1 D = 0.3934 a.u.]

Molecule HF MP2 SVWN SVWN BLYP BLYP BLYP B3LYP B3LYP Exp.
POL? POL*® numerical”® TZVP-FIP® TZVP-FIP° POL®*  6-31G(d)" cc-pVTZ POL*®
CO -0.25 0.31 0.23 0.24 0.19 0.19 0.15 0.13 0.10 0.11
H.0 1.98 1.85 1.86 1.88 1.83 1.80 2.04 1.92 1.86 1.85
H,S 1.11 1.03 1.15 1.07 0.97 1.19 1.01 0.97
HF 1.92 1.80 1.80 1.81 1.76 1.75 1.81 1.83 1.80 1.83
HCI 1.21 1.14 1.08 1.21 1.12 1.11
NH3 1.62 1.52 1.53 1.57 1.52 1.48 1.90 1.59 1.52 1.47
PH3 0.71 0.62 0.59 0.53 0.62 0.57
SO, 1.99 1.54 1.57 2.01 1.67 1.63

% taken from Cohen and Tantirungrotechai, 1999;” taken from Dickson and Becke, 1996 © taken from Calaminici, Jug and Koster, 1998, taken from
Johnson, Gill and Pople, 1993

Barrier heights of H, + H - H + H; [in kcal/mol]

Method barrier without SIC barrier with SIC
LSD -2.3 5.7
BLYP 2.9 12.6
BPW9I1 4.7 14.3
B3LYP 4.1 11.1
exp. 9.7

Taken from Johnson, 1995 and Csonka and Johnson, 1998



SIC

Table 6-2. Energy components [E; ] of various functionals for the hydrogen atom.

Functional B Il Exlpl Eclpl] Ipl + Exclpl
SVWN —0.49639 0.29975 —0.25753 —0.03945 0.00277
BLYP —0.49789 0.30747 —0.30607 0.0 0.00140
B3LYP —0.50243 0.30845 —0.30370° —0.00756 —0.00281
BP36 —0.50030 0.30653 —0.30479 —0.00248 —0.00074
BPWO91 —0.50422 0.30890 —-0.30719 —0.00631 —0.00460
HF —0.49999 0.31250 —0.31250 0.0 0.0

* Includes 0.06169 E, from exact exchange.




Compilation of mean absolute deviations for bond lengths [A] / bond angles [degrees] for

small main group molecules from different sources.

32 first row species, 6-31G(d) basis set, Johnson, Gill, and Pople, 1993

HF 0.020/2.0 SVWN 0.021/1.9
MP2 0.014/1.8 BLYP 0.020/2.3
QCISD 0.013/1.8

13 species, Martin, El-Yazal, and Francois, 1995a

CCSD(T)/cc-pvDZz 0.018/2.2 B3LYP/cc-pVDZ 0.009/1.7
CCSD(T)/cc-pVTZ 0.014/0.6 B3LYP/cc-pVTZ 0.004/0.3
CCSD(T)/cc-pvVQZ 0.002/0.4 B3LYP/cc-pVQZ 0.004/0.3

40 species cont. third row elements, 6-31G(d) basis set, Redfern, Blaudeau and Curtiss, 1997

MP2 0.022/0.4 B3LYP 0.030/0.5
BLYP 0.048/1.0 B3PW91 0.020/0.5
BPW91 0.020/0.5

% uncontracted aug-cc-pVTZ basis



Deviations between computed atomization energies and experiment for the JGP test set
employing the 6-31G(d) basis set [in kcal/mol]. Taken from Johnson, Gill and Pople,

1993.

HF MP2 QCISD SVWN SLYP BVWN BLYP

mean abs. dev.? 86 22 29 36 (40)°
mean dev. -86 -22 -29 36 (40)°

38 4(4) 6
38 0(4) 1

® Basis set free results taken from Becke, 1992.
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