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Drude - classical free electron model

1897J.J. Thomson’s discovery of electron

Basic Assumptions of the Drude model

� metal (neutral) composed of immobile 

positively charged particles (ions) and 

electrons – detached from nuclei and 

wandering freely through metal

� kinetic theory of gases can be applied to 
electrons (electron gas)

� neglect of electron-electron interactions

⇒ independent electron approximation

� neglect of electron-ion interactions

⇒ free electron approximation

In a metal the nucleus and core 
electrons retain their configuration, 
but the valence electrons leave the 
atom and form electron gas.

Motivation

Metallic features of a special interest, e.g. thermal 

and electrical conductivities, compressibility

1900 P. Drude – CLASSICAL theory of electrical 
and thermal conductivity (metals)

� DC and AC conductivity in metals, 
� thermal conductivity (due to 

electrons) in metals
� Wiedemann-Franz law.
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Drude model makes some very good 
predictions:

and is still used as a rough estimate.



� developed by Arnold Sommerfeld
� the classical Drude model (employing Maxwell-Boltzmann velocity distribution) with 

quantum mechanical Fermi-Dirac velocity distribution derived from FD 
statistics
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+ resolves the most flagrant thermal
anomalies of the Drude model

− fails to explain the difference in
metals, semiconductors and insulators

Most deficiencies due to a neglect of the electron-ion 
interaction => a potential due to positive ions needs 

to be considered 

1920‘s advent of the quantum theory => A. Sommerfeld theory of metals

⇓

Sommerfeld - semi-classical free electron model



Bravais lattice

Bravais lattice - specifies the periodic array in which the 
repeated units of the crystal are arranged.

� A Bravais lattice is an infinite array of discrete points 
(atoms, molecules, group of atoms…) with an arrangement 
and orientation that appears exactly the same, from 
whichever of the points the array is viewed.

� A (three-dimensional) Bravais lattice consists of all 
points with position vectors R of the form

1 1 2 2 3 3n n n= + +R a a a

The ions in the solid are distributed in a regular PERIODIC 
array, or ‘lattice’ => significant simplification of the 

description of the electron-ion interactions.

Primitive unit cellPrimitive unit cell – a volume of space 
that, when translated through all the 
vectors in Bravais lattice, just fills all of 
space without overlapping itself or leaving 
voids. It contains precisely one lattice point 
(no unique way)



Bravais lattice

Bravais lattice - specifies the periodic array in which the 
repeated units of the crystal are arranged.

� A Bravais lattice is an infinite array of discrete points 
(atoms, molecules, group of atoms…) with an arrangement 
and orientation that appears exactly the same, from 
whichever of the points the array is viewed.

� A (three-dimensional) Bravais lattice consists of all 
points with position vectors R of the form

1 1 2 2 3 3n n n= + +R a a a

The ions in the solid are distributed in a regular PERIODIC 
array, or ‘lattice’ => significant simplification of the 

description of the electron-ion interactions.

WignerWigner --Seitz cellSeitz cell

� A specific primitive unit cell with full symmetry of Bravais
lattice 

� Contains a region of space that is closer to a given lattice 
point than to any other lattice point

Construction of a Wigner–Seitz 
primitive cell. 



Reciprocal lattice (RL)

Motivation for RL introduction

� The periodic function g(x) = g(x+τ) (i.e. with the periodicity of the Bravais lattice like 

the potential generated by positive ions) can be generally decomposed to a Fourier 

series – i.e. the sin and cos functions

� It follows that the value of the function has to be the same for x and x+τ (τ is period of 

the function), or generally for r = (x1 , x2, …, xn) and r + R (R is period)

� the set of all such K that fulfill relation above belong to a reciprocal space       

or ‘k-space’ – (as opposed to ‘direct’ space of r)

� (the set of K is Fourier transform of a periodic direct lattice)

( )i ie e⋅ + ⋅=K r R K r

1ie ⋅ =K R
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Motivation for RL introduction
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or ‘k-space’ – (as opposed to ‘direct’ space of r)

� (the set of K is Fourier transform of a periodic direct lattice)
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1ie ⋅ =K R

Bravais lattice (BL) : 1 1 2 2 3 3n n n= + +R a a a

Plane wave,        , with the periodicity of BL          
ie ⋅k r ( )i ie e⋅ + ⋅=K r R K r

1ie ⋅ =K RSet of wave vectors K satisfying

Reciprocal latticeReciprocal lattice

Plane wave



Reciprocal lattice - construction
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R – direct space
K – reciprocal space
bi – primitve vectors of reciprocal lattice

The reciprocal lattice is a Bravais lattice!

k1, k2, k3 – generally non-integer

and at the same time we want

1ie ⋅ =K R

Wigner-Seitz cell in reciprocal space is called the first the first BrillouinBrillouin zonezone .

bcc fcc

direct

reciprocal
space

Note that the larger is the direct lattice 
the smaller is the reciprocal one



Brillouin zone

points of high symmetry are of 
special interest – these are 
called critical pointscritical points

First Brillouin zone of FCC lattice 
showing symmetry labels for high 
symmetry lines and points.



Electron Gas

Ground-State properties of the electron gas

� N electrons confined to a volume V
� Independent electron approximation
� Pauli exclusion principle
� Confinement of the electron (by the attraction of the ions) 

represented by a boundary condition (the simplest choice is a cube, L=V1/3)
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Born-von Karman 3D (periodic) boundary condition (mathematically convenient choice as 
long as bulk properties are not affected by the choice of the boundary condition - OK for large 
volume) 
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(A ‘special’ case of a contained QM free electron model)
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Electron gas  (U(r)=0) 

For 1D – a 
closed curve
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Fermi nomenclature

Gradual filing of the electronic levels – due to Pauli exclusion principle – only two 
available electronic levels associated with one k vector.
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The free fermions occupying the 
lowest energy states form a sphere 
in momentum  space. 
The surface of this sphere is the 
Fermi surfaceFermi surface. Fk
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(A nomenclature for highest occupied levels)

Fermi wave vectorFermi wave vector

Fermi energyFermi energy
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(add up one-electron energies inside Fermi sphere)
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Density of states

Generally, the total energy U ∑
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If we would like to integrate over ε, which is in 
case of electron gas proportional to norm of the k
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The number of one-electron 
levels in the energy range from 
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Density of states

Motivation
Generally, one needs often to evaluate integrals of some F(ε(k))

And transform to integration over energy

Like e. g. the electronic density 
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The density of states (DOS), especially on the Fermi level , determines the behavior of 
the material, i.e. whether it is the metal, semiconductor or insulator.

Metal Semiconductor Insulator
Fε

Fε Fε



Electrons in a Periodic Potential
General considerations

Ions in a perfect crystal – arranged in a regular periodic array

⇒ problem of an electron in a potential U(r) with the periodicity of Bravais lattice
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or alternatively

single electron Schrödinger equation

( ) ( )U U+ =R r r
Electron gas  (U(r)=const.) ( ) ieψ ⋅= k r

k r

General solution 
(Bloch's theorem)

periodic
potential

(relaxation of the free electron approximation
i.e. we consider ion-electron interactions)
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Consequence of translational symmetry in periodic systems (Bloch's theorem)

Translational operator
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or alternatively
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(relaxation of the free electron approximation
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Hamiltonian and translational operator have common set of eigenvectors/ 
eigenstates/ wave functions

Electrons in a Periodic Potential
General considerations



Band Structure
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boundary conditionboundary condition

eigenvalue problem
for each (fixed) k

k acts as a parameter
in Hamiltionian (like R in 
BOA)

Generally, discretely 
spaced eigenvalues
should be found indexed 
by n - band index.

( )
2

2ˆ
2

H U
m

ψ ψ εψ 
= − ∇ + = 
 

r
h

(Interesting properties of the eigenstates and eigenvalues)

εn(k) – continuous function of k
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� wave vector (k) can always be confined to the first Brillouin zone

(by definition of reciprocal lattice)

k in the first Brillouin zone
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( ) ( ), ,n nψ ψ+ =k K kr r
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For given For given nn, the , the eigenstateseigenstates and and eigenvalueseigenvalues are periodic functions of are periodic functions of kk
in the reciprocal lattice in the reciprocal lattice !!!!!!

substitution into the Schrödinger equation leads to the same eigenvalue problem (same 
Hamiltionian) 
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Band Structure (Interesting properties of the eigenstates and eigenvalues)
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Band Structure (Summary)

εn(k)
� continuous functions of k
� periodic functions of k in the reciprocal lattice

� It has lower and upper bound and all the values lie in the band of energies 
lying between limits

Free electron energy band in 1D

(a) Electronic levels in atomic potential (b) The 
energy levels for N such atoms in a periodic 
array as a function of mean inverse interatomic
spacing. When the atoms are far apart, the 
levels are nearly degenerate, while when 
atoms are closer, the levels broaden into 
bands .

we solve the eigenvalue problem for each single 
primitive cell of the crystal for different values of k
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Bloch theoremBloch theorem

Plane wave expansionPlane wave expansion

restatement of the original 
Schrödinger equation in 
momentum space

Schrödinger equation 
for a single electron

Electrons in a Weak Periodic Potential(‘Getting specific’)



Electrons in a Weak Periodic Potential
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(‘Getting specific’)

Near the 1/2K, one level is raised and one 
lowered by abs(UK)



Energy Bands in 3 Dimensions - example

Free electron energy levels for an Free electron energy levels for an fccfcc BravaisBravais lattice.lattice.

εX is the energy at 
point X

The horizontal lines 
give Fermi energies 
for the indicated 
number of electrons 
per unit cell.
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Calculation issues



From the Band Structure to the Total Energy From the Band Structure to the Total Energy 

The total energy calculations require numerical integration 
over the first Brillouin zone (generally 3-dimensional)

In ab initio calculations the 
computational effort for 
each k-point is substantial

Special grid points for
Brillouin-zone integrations

• mean-value point (Baldereschi)
• recursive Chadi-Cohen grid
• Monkhorst-Pack grid

Brillouin Zone Sampling
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number of k-points is reduced by symmetry
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k k k k ω(k) are the weight factors that depend on 
the symmetry of unit cell. 

Monkhorst-Pack grid
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Fermi Surface Sampling

( ){ } ( ); 1, ,i i Fi Nε ε ε= <kk kK
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for infinitely fine BZ sampling

Difficult for metallic systems: slightly different k-point sampling can lead to bands 
entering or exiting the sum ⇒ intractable number of k-points

� finding the portion of the BZ that is occupied 
assigning a volume in reciprocal space to each k-point (tetrahedron method)

� convergence in SCF procedure (instabilities introduced by a coarse sampling)

εF is self-consistently adjusted to fulfill the normalization 
condition.

solution : to smear the Fermi surface by introducing a distribution of occupation
numbers (finite temperature methods: Fermi-Dirac, Gaussian smearing)

The total energy is no longer variational with respect 
to partial occupancies

⇒ generalized free energygeneralized free energy

Fermi-Dirac distribution function at T=0, i.e. the step function, 
which jump from 0 to 1 at Fermi level
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Nk – occupation number, i.e. the step function, which 
jump from 0 to 1 



Finite Temperature Methods
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Finite temperature methodsFinite temperature methods

� Energy/DOS calculations

� The linear tetrahedron is more or less fool prove

� The Blöchl’s method is not variational with respect to the
partial occupancies ⇒ calculated forces might be wrong
by a few percent. 

� If accurate forces are required – use a finite temperature
methods.

Silicon

� Calculation of forces

� Semiconductors (Gaussian smearing)

� Metals (Methfessel and Paxton)

� Always: check k-point convergence

Linear tetrahedron method + Linear tetrahedron method + BlBl ööchlchl correctioncorrection



Methods



Quantum-Mechanical Calculations of Periodic Systems

QM methods for extended systemsQM methods for extended systems

simulation of extended systems relies on
an ensemble of computational strategies 
and methods

� The model
finite cluster, QM/MM embedding, periodic supercell approach

� The Hamiltonian
most of the periodic calculations are performed with reference
to DFT with LDA, GGA, and hybrid functionals. 

� The basis set
plane waves vs. local AO functions, numeric basis sets (PAO)

� The computational scheme
direct vs. reciprocal space representation, 
all-electron vs. pseudopotential methods



periodic QM methodsperiodic QM methods

semiempiricalsemiempirical ab initioab initio

planeplane --wavewave
DFTDFT

HFHF
DFT/B3LYP DFT/B3LYP tighttight --bindingbinding postpost --HFHF QMCQMC

VASPVASP CRYSTALCRYSTAL CRYSCORCRYSCOR

VASP is a complex package for performing ab initio quantum-mechanical 
molecular dynamics (MD) simulations using pseudopotentials or the projector-
augmented wave method and a plane wave basis set. 

The CRYSTAL program computes the electronic structure of periodic systems 
within Hartree Fock, density functional or various hybrid approximations. 
The Bloch functions of the periodic systems are expanded as linear 
combinations of atom centred Gaussian functions. 

Periodic On Local Correlation theory (Molpro)
currently implemented: LMP2 method+=



TightTight --binding methodbinding method

… lies between the very accurate, very 
expensive, ab initio methods, and the fast 
but limited empirical methods.       
Goringe (1997)

The full periodic crystal Hamiltonian can be approximated by the Hamiltonian, Hat, of  
a single atom located at the lattice point. 
The atomic levels are well localized, i.e. the electrons are also well localized. 
True periodic wave function (satisfying Bloch theorem) is of the form of linear 
combination of  functions close to localized atomic wave functions.
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atomic wave functionsTrue periodic wave function

(Bloch) one-electron energies

where Em is the energy of the m-th atomic level, and αm,l, βm and γm,l are the tight binding 
matrix elements.

overlap integrals – should be small (for TB to work) 

inter atomic matrix element/ bond integral –
important and usually not calculated directly but 
parametrized from chemical bond energy data

often neglected



Summary of TB approximationsSummary of TB approximations

� The total energy is expressed as the sum of single-electron
eigenvalues plus the sum of pair terms

� The matrix elements of the tight-binding Hamiltonian depend
only upon the vector between two atomic centers

� A minimal set of orthogonal, localized basis functions is assumed
to exist. The basis set is not, in general, explicitly constructed.

� Self consistency is neglected or approximated by onsite terms
(local charge neutrality, Hubbard U)

( )1
2i i j

i occ i j

E Uε
≠

= + −∑ ∑ R R

Total energy calculations

band structure energy (sum of one-electron 
eigenvalues)+repulsive two-body term (usually
fitted to reproduce bulk properties)



Full periodic planeFull periodic plane --wave methodswave methods

KS-DFT + plane-wave basis

All-electron methods
spheres around atoms 

+ interstitial region 
APW, LAPW, FP-LMTO

Pseudopotential methods
Norm-conserving PP

Ultrasoft PP
PAW

Muffin Tin
Used to make muffins, a muffin tin (also known 
as a "muffin pan") has a number of cup-shaped 
depressions to hold individual portions of batter. 



Augmented planeAugmented plane --wave methods (APW)wave methods (APW)

core region

interstitial region
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is continuous at the boundary 
between core and interstitial regions
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pppLAPW (linearized APW)
the energy dependence 
of the APW Hamiltonian
is approximated 



Pseudopotential planePseudopotential plane --wave methodswave methods

plane wave expansion 
of the cell periodic part
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Pseudopotential approximation

ab initio norm-conserving PP – good transferability but PP are hard –
too many PW needed in wave function expansion
D.R. Hamann at al., Phys.Rev.Lett.43, 1494 (1979)

cutoffm
ε<

+
2

22 Kkh

(Frozen core approximation)

atomic core functions

projection



Vanderbilt (ultrasoft) pseudopotentialsVanderbilt (ultrasoft) pseudopotentials

norm-conserving constraint is relaxed
pros - soft – only few PW neeeded in WF expansion
cons – transferability, correct charge density
D. Vanderbilt, Phys.Rev. B 41, 7892 (1990)

Oxygen 2p radial wave function (solid), and corresponding 
pseudo-wave-functions generated using HSC (dotted) and 
Vanderbilt (dashed) methods.

• introduces compensating terms to recover the correct electron
density (augmentation charges) – lost due to NC relaxation

• two or more reference energies are introduced to improve
pseudopotential transferability



Projector augmented wave (PAW) methodProjector augmented wave (PAW) method

dual transformation between pseudo and true Hilbert spaces 
P.E. Blöchl, Phys.Rev. B 50, 17953 (1994)
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augmentation region R

projector functions          are 
orthogonal to the pseudo partial 
waves
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PAW combines the efficiency of the pseudopotential PW methods with 
the accuracy provided by augmentation, i.e. all-electron approaches



AE All-electron basis set 
BO Born–Oppenheimer approximation
CP Car–Parrinello method
DFT Density functional theory
FLAPW Fully linearized augmented 

plane wave 
GGA Generalized gradient approximation
GO Geometry optimization 
GTO Gaussian-type orbitals
HF Hartree–Fock
LDA Local density approximation
MD Molecular dynamics 
NCPP Norm-conserving pseudopotentials
NTO Numerical type orbitals
PAW Projector-augmented wave method
PH Phonons 
PP Pseudopotentials
PT Perturbation theory 
PW Plane waves
SE Semi-empirical methods 
STO Slater-type orbitals
TD Time dependent 
TE Total energy
USPP Ultra-soft pseudopotentials



LocalLocal --MP2 MP2 for for nonconductingnonconducting crystals :  crystals :  CRYSCORCRYSCOR

BEHF ∆∆∆∆E2 BEMP2 BEEXP

DiamondDiamond 0.407 0.134 0.541 0.555

SiliconSilicon 0.227 0.083 0.310 0.345

SiCSiC 0.324 0.113 0.437 0.475

BNBN 0.340 0.123 0.463 0.500

Binding Energies per unit cell (au)

C. Pisaniat al., J.Chem.Phys.122, 094113 (2005)

Local correlation techniques as proposed by Pulay and Saebø, 
and efficiently implemented for molecules in the MOLPRO program,
have been extended by C. Pisani and coworkers to non-conducting 
periodic systems



Towards higher accuracy: Quantum Monte CarloTowards higher accuracy: Quantum Monte Carlo

VMC (Variational QMC) - stochastic integration method 
to evaluate expectation values for a chosen trial wave function

DMC (Diffusion QMC) - projection technique to enhance
the GS component of a starting trial wave function

Current algorithms and computational resources permit QMC
calculations on systems up to about 1000 electrons

R.Q. Hood at al., Phys. Rev.B 57, 8972 (1998)

Exchange and Correlation in Silicon
diamond structure, (110) plane

LDA
x

VMC
x ee − LDA

c
VMC
c ee −



J.C. Grossman at al., Phys. Rev. Lett.75, 3870 (1995)

Relative energies of CRelative energies of C 2020 isomersisomers



Difference in energy per atom in the diamond phase and in the β-tin phase of Si. The DMC 
energy of 480 ± 50 meV/atom benchmarks the accuracy of the different DFT functionals. 
The gray region of the DMC bar represents the uncertainty of the DMC energy. 





Constructing the basis of Bloch functions 
as LCAO

HartreeHartree --Fock calculations of periodic systemsFock calculations of periodic systems
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Evaluating Fock matrix elements in direct 
space using the local basis set
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Forming the the F and S matrices 
in reciprocal space
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Solving Hartree-Fock equations 
for each k

( ) ( ) ( ) ( ) ( )kEkCkSkCkF =

Determining the Fermi energy, EF, and 
forming the density matrix
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Calculating the total energy per cell
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