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Drude - classical free electron mog

1897J.J. Thomson’s discovery of electron

-
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Motivation

Metallic features of a special interest, e.g. thermal = 5

and electrical conductivities, compressibility
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1900 P. Drude — CLASSICAL theory of electrical

and thermal conductivity (metals)

Basic Assumptions of the Drude model

+ metal (neutral) composed of immobile
positively charged particles (ions) and
electrons — detached from nuclei and
wandering freely through metal

s Kkinetic theory of gases can be applied to

electrons (electron gas)
» neglect of electron-electron interactions

*

L)

L)

= independent electron approximation
» neglect of electron-ion interactions

*

L)

L)

= free electron approximation

D Nucleus
lon
[ ] cor
E Conduction electrons

In a metal the nucleus and core
electrons retain their configuration,
but the valence electrons leave the
atom and form electron gas.

Drude model makes some very good
predictions:

s DC and AC conductivity in metals,
+» thermal conductivity (due to
electrons) in metals KoLt

< Wiedemann-Franz law. g

and is still used as a rough estimate.
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Sommerfeld - semi-classical free electron mq

1920's advent of the quantum theory => A. Sommerfeld th&ory of metals

)

0

» developed by Arnold Sommerfeld
» the classical Drude model (employing Maxwell-Boltzmann velocity distribution) with
guantum mechanical Fermi-Dirac velocity distribution derived from FD

statistics N L0 1
: 4n3 exp[me? — kgTo)kgT] + 1
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0.6 [ . + resolves the most flagrant thermal
8 T anomalies of the Drude model
Sy p — fails to explain the difference in
0z b E metals, semiconductors and insulators
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. o/ d . 5 Most deficiencies due to a neglect of the electron-ion
interaction => a potential due to positive ions needs
to be considered



Bravais lattice

The ions in the solid are distributed in a regular PERIODIC
array, or ‘lattice’ => significant simplification of the
description of the electron-ion interactions.

Bravais lattice - specifies the periodic array in which the
repeated units of the crystal are arranged.

* A Bravais lattice is an infinite array of discrete points
(atoms, molecules, group of atoms...) with an arrangement
and orientation that appears exactly the same, from
whichever of the points the array is viewed.

s A (three-dimensional) Bravais lattice consists of all
points with position vectors R of the form

R=na +na,+na.

Primitive unit cell — a volume of space
that, when translated through all the
vectors in Bravais lattice, just fills all of
space without overlapping itself or leaving
voids. It contains precisely one lattice point
(no unique way)




Bravais lattice

The ions in the solid are distributed in a regular PERIODIC
array, or ‘lattice’ => significant simplification of the
description of the electron-ion interactions.

Bravais lattice - specifies the periodic array in which the
repeated units of the crystal are arranged.

* A Bravais lattice is an infinite array of discrete points
(atoms, molecules, group of atoms...) with an arrangement
and orientation that appears exactly the same, from
whichever of the points the array is viewed.

. . — . Q0
s A (three-dimensional) Bravais lattice consists of all
points with position vectors R of the form laJ # 12}, ¢ = 90°
— 1
R= nla1+ nza2+ na.
Wigner -Seitz cell PY
% A specific primitive unit cell with full symmetry of Bravais
lattice
s Contains a region of space that is closer to a given lattice o

point than to any other lattice point
Construction of a Wigner—Seitz

primitive cell.



Reciprocal lattice (RL)

Motivation for RL introduction

¢ The periodic function g(x) = g(x+T) (i.e. with the periodicity of the Bravais lattice like
the potential generated by positive ions) can be generally decomposed to a Fourier
series — i.e. the sin and cos functions —»  g(z)= Y G[n] - e?"%".

N=—=

¢ It follows that the value of the function has to be the same for x and x+T1 (7 is period of

the function), or generally for r = (X, , X,, ..., X,) and r + R (R is period) = eiK[CHR) = éK

a
¢ the set of all such K that fulfill relation above belong to a reciprocal space
KR :1

or ‘k-space’ — (as opposed to ‘direct’ space of r) e

* (the set of K is Fourier transform of a periodic direct lattice)




Reciprocal lattice (RL)

Motivation for RL introduction

¢ The periodic function g(x) = g(x+T) (i.e. with the periodicity of the Bravais lattice like
the potential generated by positive ions) can be generally decomposed to a Fourier
series — i.e. the sin and cos functions —»  g(z)= Y G[n] - e?"%".

N=—=

¢ It follows that the value of the function has to be the same for x and x+T1 (7 is period of

the function), or generally for r = (X, , X,, ..., X,) and r + R (R is period) = eiK[(:HR) = éK

a
¢ the set of all such K that fulfill relation above belong to a reciprocal space
KR :1

or ‘k-space’ — (as opposed to ‘direct’ space of r) e

* (the set of K is Fourier transform of a periodic direct lattice)

Bravais lattice (BL) : R=na +na,+na.
Plane wave, e'km, with the periodicity of BL

- eiK[(jHR) — AKD

Set of wave vectors K satisfying | @K® =1

2

Reciprocal lattice

Plane wave



Reciprocal lattice - constructic

b, =277— 2%
1 ai[aazxa:a) k = klbl + kzbz + k3b3-
R = ma; + nma; + nsa
_ asxal b .:277_ . 1] 242 3 3
b, 27781 [(]azxas) = B CE Ky, Ky, ks — generally non-integer
b, =27 3% i
alt(]azxaii) k-R = 211'(](1”1 + kzﬁ'z + k3n3).

Note that thg larger is the direct lattice and at the same time we want
the smaller is the reciprocal one ’

e

IKR :1
K =kb,+kb,+kb, kK k, k integer

The reciprocal lattice is a Bravais lattice! R — direct space
K — reciprocal space
b, — primitve vectors of reciprocal lattice

Wigner-Seitz cell in reciprocal space is called the first Brillouin zone.

direct
<—
reciprocal

space




Symbol Description
r Center of the Brillouin zone
points of high symmetry are of Simple cube
special interest — these are M Center of an edge
called critical points R Comer point
X Center of a face
Face-centered cubic
K Middle of an edge joining two hexagonal faces
L Center of a hexagonal face
U Middle of an edge joining a hexagonal and a square face
W Corner point
X Center of a square face
Body-centered cubic
H Corner point joining four edges
N Center of a face
P Corner point joining three edges
Hexagonal
A Center of a hexagonal face
H Corner point
First Brillouin zone of FCC lattice K Middle of an edge joining two rectangular faces
ShOWing Symmeny labels for h'gh L Middle of an edge joining a hexagonal and a rectangular face
Symmetry lines and pOintS' M Center of a rectangular face




=l=leilfelal €15 |(A ‘special’ case of a contained QM free electron model)

A _h2 5 B
Ground-State properties of the electron gas H‘ﬂ‘[ P +U(f)j‘/f—€¢’

% N electrons confined to a volume V Electron gas (U(r)=0)
+ Independent electron approximation
s Pauli exclusion principle
s Confinement of the electron (by the attraction of the ions)
represented by a boundary condition (the simplest choice is a cube, L=V1/3)

_ h2 62 62 62 =_h_2 ) : ) -
Z"(axz "oy +afj‘”(r) 2m V1) hlr)= g
ﬁ:?g with eigenvaluep =7k - Vv :ﬁ (k) = o

m

Kk

Born-von Karman 3D (periodic) boundary condition (mathematically convenient choice as
long as bulk properties are not affected by the choice of the boundary condition - OK for large

volume)

wx+Lyd=p(xy L3=y( xyz J=¢( xy) €¥=¢'=¢"=1 | Forid-a

closed curve

=



Electron Gas (A ‘special’ case of a contained QM free electron model)

A _h2 5 B
Ground-State properties of the electron gas H‘ﬂ‘[ P +U(f)j‘/f—€¢’

% N electrons confined to a volume V Electron gas (U(r)=0)

+ Independent electron approximation

s Pauli exclusion principle

s Confinement of the electron (by the attraction of tha inne)
represented by a boundary condition (the simpl k.4

hZ 62 62 62 hZ 5 ° ‘ T * ’
- +—+ r)=——Lylr)=ey(r

Zn(axz oy azj‘”() g A)zet)
p="9 with eigenvaluep =7k ﬂ v—K ﬁ ° N * N k—‘f
P | or J P m
Born-von Karman 3D (periodic) boundary condition ) ) ! ) { I
long as bulk properties are not affected by the choice of the L
volume) » . .
Y(x+Ly,d=(xy Li=¢( xyz =¢( xy)

) K:?, K,=@, kﬁ%, n, n, n integer




==210000 ale)aalziale il (A nomenclature for highest occupied levels)

Gradual filing of the electronic levels — due to Pauli exclusion principle — only two |2k 87

available electronic levels associated with one k vector. k, v
nk’ 2rm, 2rm, 2rm, . oo /
slk)=—— =-—=, — ==, , N, N Integer
(k) == K== k== k==75 nun,n integ .

The free fermions occupying the
lowest energy states form a sphere
In momentum space.

The surface of this sphere is the
Fermi surface.

2m .
Fermi wave vector

Fermi energy

h2
E=2 E —k?
/ k<kF2m

Total ground -state energy of N free electrons
(add up one-electron energies inside Fermi sphere)

1
Generally, the total energy U~ U = 22£(k) fle(k)) — f(¢)=

- —) /KT
1+&)
k<k
Ak :g o
U =— -energydensity
V v

S YA (E() U= a0 (e(K)

|Ak - CandV - o]

U=2




Density of states

Generally, the total energy U~ U = ZZE(k) f(ek)) — f(g)=

87‘[3 k<k|:
V U

U= 2— Yakek)f(ek) == u:j%e(k)f(g(k))

k<k|: |Ak - Canav - °°|

1

If we would like to integrate over g, which is in ‘ WK
case of electron gas proportional to norm of the k — ( ) -

a8

1+é£—,u/kT

kdk
j e(k) f (£(k)) = j e(k) f (£(k)) = [[de [y (e)
T=0

u_ - v D O
V_u_jolgug(,s)ms . o T

oo= P—- o ==

The number of one-electron ) v -

g(€) ldle =—x | |evels in the energy range from B g -

V - g:8—— b

v eto e +de >e S =2
Density of states O S . S ve-eo




Density of states

Generally, the total energy U~ U = ZZf(k) f(ek)) — f(g)=

8713 k<k
\Y U :
u= v -energydensity

1
1+é£—,u/kT

U= 2— Yakek)f(ek) == u:j%g(k)f(g(k))

k<kF |Ak - CanaV - o]

If we would like to integrate over €, which is in 1k?

2m

case of electron gas proportional to norm of the k — g(k) =

a8

k*dk

j £(k) f ((k)) = j e(k) f (£(k)) = [|de [y (e)

T=0

%:u:jdgEg(s)Ef

1 The number of one-electron
g(e) Lde = v X | levels in the energy range from
v eto e +de

Density of states




Density of states

Motivation

Generally, one needs often to evaluate integrals of some F(g(k)) J- F(e(k))

And transform to integration over energy Idé‘ [g(&) [F ()

Like e. g. the electronic density n= j

The density of states (DOS), especially on the Fermi level

1 (e = [de (o) T (0

. determines the behavior of

the material, i.e. whether it is the metal, semiconductor or insulator.

Electronic Density of States Electronic Density of States Elect
cccccccccccccccc fec Ni Denshy (stateseV) fecsi S/eV)
— ——— — e o e | S
2% B
24
0.05 _
““““““““““““ TR AT do o N T
0.0 0.0
5-1.0-0500 05 1.0 1.5 20 25 30 35 -120 -100 -8.0 -6.0 40 =20 00 20 40 60 8.0 100 -22.0 -20.0-18.0 -1 -10.0
£ ey )



General considerations

lons in a perfect crystal — arranged in a regular periodic array

= sloidelatsy lnl =l Beidlelo | {or 2lo](]g] 21| (relaxation of the free electron approximation
l.e. we consider ion-electron interactions)

— problem of an electron in a potential U(r) with the periodicity of Bravais lattice

single electron Schrddinger equation z" z" z* z*

Vir)

|—A|¢/=£—Z—; D2+U(r)]¢=g¢

Electron gas (U(r)=const)

General solution
(Bloch's theorem)

or alternatively

U(R+r)=U(r)

wk (r) :eikm

w(r) =@M u.(r+R)

l/jnk (r + R) - eikﬂank (r)

VYV

periodic
potential

= Uk (r)

periodicity of BL

Consequence of translational symmetry in periodic systems (Bloch's theorem)

Translational operator T
R

~

T.f(r)=f(r +R) [ﬁ,fR]:o




General considerations

General solution W)= eikm.

= sleidelaisy lnl =l Beidlelo {or 2lo](]g] 21| (relaxation of the free electron approximation
l.e. we consider ion-electron interactions)

Un (r + R): Unk (r)

or alternatively w(r+R) = e”‘“ng(r)

periodicity of BL

Consequence of translational symmetry in periodic systems (Bloch's theorem)

N

Translational operator TR

Hamiltonian and translational operator have common set of eigenvectors/

eigenstates/ wave functions
HYy =y
T =%y

~

T.f(r)=f(r+R)

(H,T.|=0

= T =0 +R)=Ry(r)

4




2rlale siiguleilli=r |(Interesting properties of the eigenstates and eigenvalues)

. ~ 8
< substituting ¢, (r)=€*"u,(r) into SChE —* H‘/J:(‘Z—nDzJ“U(r)j‘/’:&ﬂ

eigenvalue problem
for each (fixed) k

2

ne (1

— | =[+k +U (r u. (r=&. U, (r k acts as a parameter

oml i (1) | U (1) icUnc (1) in Hamiltionian (like R in

BOA)
U, (r) = U, (r + R) |::> £ (k) Generally, discretely
. : spaced eigenvalues

boundary condition energy band should be found indexed

by n - band index.

€,(k) — continuous function of k

s wave vector (k) can always be confined to the first Brillouin zone
k'=k +K k in the first Brillouin zone v (r+R) =%y _ (1)

eiK[R =1 (by definition of reciprocal lattice)

SR — i(HOR Z kR =) |V (r+R) = ei(k+l§ﬂ3tl/jn!( (r)= eik[Rl//n_k (r)
a
wnk (r) :elk[R L%k (r) wnk'(r) :elk[ERq‘uk'(r)




20 siigulemilli=r | (Interesting properties of the eigenstates and eigenvalues)

“ wave vector (k) can always be confined to the first Brillouin zone

k' =k +K k in the first Brillouin zone v (r+R)=€"®y_ (r)
ef® =1 (by definition of reciprocal lattice)
SR — (HOR — kR =) Vi (r+R) = ei(k+}§[an!( (r)= eikuazwn!( (r)

- - a

Wuc (1) =€ F U, (r) Yo (1) =€ T4, (1)

substitution into the Schrédinger equation leads to the same eigenvalue problem (same
Hamiltionian) n2 (1 2
—(TD +kj +U(r) | Uy (r) =&, U, (r)

2m\ |

Uy (1) = Uy (1) =) Yk (r):wn,k (r)

gn,k' = gn,k

For given N, the eigenstates and eigenvalues are periodic functions of k
in the reciprocal lattice !!!



Band Structure ([Sllylut:13%)

€,(K)
+» continuous functions of k

2m\ |

[h_z(}D +k] +U(I’)] Uy (1) = & Uy (1)

U, () =u, (r +R)
£,(k)

¢ periodic functions of k in the reciprocal lattice

=

¢ It has lower and upper bound and all the values lie in the band of energies

lvinag between limits
&

Vir) Energy levels
r (Spacing)!

1':‘-

Free electron energy band in 1D

we solve the eigenvalue problem for each single
primitive cell of the crystal for different values of k

=3
N\ /,, =2 Bands,

cach
with
N values
of k

- e ———————
n=1 —

"2
(2) N-fold (b}

degenerate
Ievels

(a) Electronic levels in atomic potential (b) The
energy levels for N such atoms in a periodic
array as a function of mean inverse interatomic
spacing. When the atoms are far apart, the
levels are nearly degenerate, while when
atoms are closer, the levels broaden into
bands .




Electrons in a Weak Periodic PotentialSE&ult RS Llilvy)

. 42 Schrodinger equation
H¢=(—%Dz +U(r)j¢/=£¢/ for a single electron

1 Bloch theorem /78 (r) =e“"u,, (r)

[hz(lm +k] +U(r)] u, (r)=&,u.(r)

2m\ |

Wy ( r ) = ZCk—K gle
1 Plane wave expansion K |

, restatement of the original
(—(k -K) _gnk} Ce—x +;UK'_K G =0 Schrédinger equation in
momentum space




Electrons in a Weak Periodic PotentialqestlgleEelcliilol)

(h—z(k—K)z—glck +> Ugy G =0 l
2m -K = K'-K -K i .

Uy (I‘) = ZCk—K gl
U(r)=>U,.e""

2

hZ
free electron solution £f_K = —(

o k-K)
(UK:O)

solution in case of weak
periodic potential U,

e-¢g U,

i =0 B | £=¢° + |U,|,
-U, &-&, « £ 1%

Near the 1/2K, one level is raised and one
lowered by abs(Uy)




Energy Bands in 3 Dimensions - exa

Free electron energy levels for an fcc Bravais lattice.

gy IS the energy at

point X
_w(2mY
8__ -
2m\ a

The horizontal lines
give Fermi energies
for the indicated
number of electrons
per unit cell.




Calculation iIssues




Brillouin Zone Sampling

From the Band Structure to the Total Energy

Reminder:

U ] dk
u=s -energydensity J.H F(e(k))

The total energy calculations require numerical integration
over the first Brillouin zone (generally 3-dimensional)

In ab initio calculations the
computational effort for
each k-point is substantial

=)

a[Kk) are the weight factors that depend on

the symmetry of unit cell.

* mean-value point (Baldereschi)
» recursive Chadi-Cohen grid
 Monkhorst-Pack grid ——

u=[ 800 f (oK)

Special grid points for
Brillouin-zone integrations

kOBZ

jBZF(k)dk =Y w(k)F(k)

krst = urbl + usbz +utb3

a

:2a—q—1
29

a

1 2,...,q

number of k-points is reduced by symmetry

Example: simple-cubic lattice

g=1 k=(2)(000) q=2 k=(z=),12)



Monkhorst-Pack grid

J‘ = (k)dk — Z a)(k) F(k) aJk) are the weight factors that depend on
BZ OBy the symmetry of unit cell.
A
Example: bz
e quadratic 2-dimensional lattice ]/2 <1i
® g1 = q» =4 = 16k-points o o | o @‘( <2
IOV LI
o | ¢ o | @ @ b
e only 3 inequivalent k-points (= IBZ) Ok i 1
_4Xk1:(%7%):>(1) :% L [ o [ |BZ
—4xk =3, =2>m=1
2 513 ‘11 ® o o o [“_ BZ
- 8Xk3:(§,§):>ﬂ)3:§
o J F(k)dk = F (k) + 3F (ko) + 5F (k3)



Convergence of the total energy ( hartree ) at the HF level for magnesium
oxide, silicon, and beryllium as a function of grid size

log(|dE)

8 10 12 14

g (Monkhorst-Pack)

16 18 20

22

MgO (16eV)
—m— Si (6.25eV)
Be (0eV)

insulator

semiconductor

concluctor




selsilensEnalllale]) | Nk —occupation number, i.e. the step function, which

jump from0Oto 1

{fi (k); i=1,... ,Nk} & (k) <e&: for infinitely fine BZ sampling
ZBZ a)(k) N, =N & is self-consistently adjusted to fulfill the nornzalion

condition.
> a(k)&(k)f (k) —> | Fermi-Dirac distribution function at T=0, i.e. thies function,
kOBZ which jump from 0 to 1 at Fermi level

Difficult for metallic systems: slightly different k-point sampling can lead to bands
entering or exiting the sum = intractable number of k-points

+ finding the portion of the BZ that is occupied
assigning a volume in reciprocal space to each k-point (tetrahedron method)

+ convergence in SCF procedure (instabilities introduced by a coarse sampling)

solution : to smear the Fermi surface by introducing a distribution of occupation
numbers (finite temperature methods: Fermi-Dirac, Gaussian smearing)

AE

The total energy is no longer variational with respect ]

to partial occupancies \\ /

= generalized free energy

\ 4
~

-5 0 Vo



Finite Temperature Methods

Introducing a new variational functional F= E—ZUS( fj)
n

F free energy
S entropy of a system of non-interacting electrons at a finite temperature

J smearing parameter
f partial occupations

Fermi-Dirac smearing Gaussian smearing
c_ 1 1-erf (‘t"j
To1egaHle f =
2
o=k, T o has no physical meaningo — )
+
Accurate extrapolation for sigma -> 0 E(0)= Flo) 5 E(0)

can be obtained



Linear tetrahedron method +

000

*

000

*

Bldchl correction

Energy/DOS calculations
The linear tetrahedron is more or less fool prove
The Bl6chl’s method is not variational with respexthe

partial occupancies> calculated forces might be wrong

by a few percent.

If accurate forces are required — use a finite teatpee
methods.

Finite temperature methods

X4

L)

4

D)

L)

X4

L)

4

D)

L)

Calculation of forces

Semiconductors (Gaussian smearing)
Metals (Methfessel and Paxton)
Always: check k-point convergence

dE (mRy)

»
T

L Il

| 1
100 200 300
Number of irreducible k points

400






Quantum-Mechanical Calculations of Periodic Systems

QM methods for extended systems

SCF (Hartree-Fock) calculations;
Basis set: STO, GTO, plane waves
Correlations: CC, Cl, MP perturbation theory

Density-Functional-based calculations;
Basis set: GTO, plane waves
Correlations: LDA + corrections

simulation of extended systems relies on
an ensemble of computational strategies
and methOdS Empirical potentials

10' 10? 10° 10°
Number of atoms in the system under consideration

Tight-binding
culations;
Slater-Koster
approximation.

Level of sophistication

% The model
finite cluster, QM/MM embedding, periodic supercell approach

% The Hamiltonian
most of the periodic calculations are performed with reference
to DFT with LDA, GGA, and hybrid functionals.

s The basis set
plane waves vs. local AO functions, numeric basis sets (PAO)

% The computational scheme
direct vs. reciprocal space representation,
all-electron vs. pseudopotential methods



periodic QM methods

ab initio

DFT/B3LYP

VASP }

semiempirical

CRYSTAL } CRYSCOR }

VASP is a complex package for performing ab initio quantum-mechanical
" molecular dynamics (MD) simulations using pseudopotentials or the projector-
s augmented wave method and a plane wave basis set.

The CRYSTAL program computes the electronic structure of periodic systems
within Hartree Fock, density functional or various hybrid approximations.

The Bloch functions of the periodic systems are expanded as linear
combinations of atom centred Gaussian functions.

Periodic On Local Correlation theory (Molpro)
currently implemented: LMP2 method

ERYSEOR = /M) -+




... lies between the very accurate, very
expensive, ab initio methods, and the fast

Tight -binding method but limited empirical methods.
Goringe (1997)
The full periodic crystal Hamiltonian can be approximated by the Hamiltonian, H,, of
a single atom located at the lattice point.
The atomic levels are well localized, i.e. the electrons are also well localized.
True periodic wave function (satisfying Bloch theorem) is of the form of linear

combination of functions close to localized atomic wave functions.

\
H = Hat+AU (r)||¥ :Ze”‘[Rgﬂ(r —R) , where (dr) :anl,/ﬂn(r)

v
True periodic wave function atomic wave functions

(Bloch) one-electron energies
_ -3m + ZRH;E'D E{ F:"‘m,f(Rﬂ)Etk-Hﬂ

1+ Zﬂﬂ#ﬂ Zf Eik'ﬂ"ﬂm,fiﬂn} : often neglected

where E_ is the energy of the m-th atomic level, and a..l. B.. and v.., are the tiaht bindina
matrix elements. B, = —/w;(r)&br(r)wm(r) Pr

Em(k) . Em

overlap integrals — should be small (for TB to work) | cu, i (Ry) = /@;(T)@I(T‘ — R,)d%r

inter atomic matrix element/ bond integral —
important and usually not calculated directly but | Ym(Rn) = — / er(P)AU (r)ei(r — Ry) dr |
parametrized from chemical bond energy data




Summary of TB approximations

Total energy calculations

band structure energy (sum of one-electron

E — Z E +% Z U (‘R —_ R ‘) eigenvalues)+repulsive two-body term (usually
| i j

_ e fitted to reproduce bulk properties)
i occ i#

4

L)

D)

» The total energy is expressed as the sum of single-electron
eigenvalues plus the sum of pair terms

4

L)

» The matrix elements of the tight-binding Hamiltonian depend
only upon the vector between two atomic centers

D)

4

D)

L)

» A minimal set of orthogonal, localized basis functions is assumed
to exist. The basis set is not, in general, explicitly constructed.

s Self consistency is neglected or approximated by onsite terms
(local charge neutrality, Hubbard U)




Full periodic plane -wave methods

KS-DFT + plane-wave basis

—, o

~

All-electron methods Pseudopotential methods
spheres around atoms Norm-conserving PP

+ interstitial region Ultrasoft PP
APW, LAPW, FP-LMTO PAW

Muffin Tin

Used to make muffins, a muffin tin (also known

as a "muffin pan") has a number of cup-shaped
depressions to hold individual portions of batter.




Augmented plane -wave methods (APW)

core region
h2

2 g () +v(-R)a.()=¢ 2.()

interstitial region

A.(r)=€"
boundary
e (1) e e el egions [ #E"(1)
@ (r)=> g (r) HC = ESC
K

LAPW (inearized APW) T, &)=dlr,e,)+(e-¢ )dr.¢,)
the energy dependence

of the APW Hamiltonian ' 0
IS approximated dr d ‘9) - de (dl’ , 5)



Pseudopotential plane -wave methods

wnk (r) — Z Cn,k+K ei(k +K )™
K

plane wave expansion
of the cell periodic part

JL

(Frozen core approximation)

2,

KI

2 ion H XC _
‘k + K‘ JKK' +VK—K' +VK—K' +VK—K' Cn,k+K’ - gnCn,k+K

2
n°lk +K|
2m
Pseudopotential approximation

| H + Z(EU - Ea,c)l‘fja,c >< {F}a,cl ]':ijS
o.¢

<& cutoff

VR = Z(Eu ‘“Ecv,c)lﬂpcu,c >< {Pa,cls d

@,C atomic core functions

ab initio norm-conserving PP — good transferability but PP are hard —
too many PW needed in wave function expansion

Ps PS5
"-EU {P'v -

projection

D.R. Hamanrat al., Phys Rev.Let?d3, 1494 (1979)

fdrrgp‘g* /drr

Jo(r),

ll’]pseudo
N
VA
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Y \/H[fv '
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I
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I
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I
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I
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Vanderbilt (ultrasoft) pseudopotentials

norm-conserving constraint is relaxed

pros - soft — only few PW neeeded in WF expansion

cons — transferability, correct charge density
D. Vanderbilt,Phys.RevB 41, 7892 (1990)

()

Oxygen 2p radial wave function (solid), and corresponding

pseudo-wave-functions generated using HSC (dotted) and
Vanderbilt (dashed) methods.

 introduces compensating terms to recover the correct electron
density (augmentation charges) — lost due to NC relaxation

« two or more reference energies are introduced to improve
pseudopotential transferability




Projector augmented wave (PAW) method

dual transformation between pseudo and true Hilbert spaces
P.E. Bléchl,Phys.RevB 50, 17953 (1994) ) ) )
(@) = [2) + [T — [T = |T) + 5 (I16:) — |£:))(Bil D)

W = TLTJ pseudo-wavefunctio

(vlAw)=(3[A) \fﬂ\\\/ N

A=T*AT

|®Y, |F) |®), |T')
augmentation region R A {\
projector functions | p,) are ~/ \_— (—
orthogonal to the pseudo partial
waves 1By, |0 (@), [T

:1+ZR:TR :1+Z(‘ﬂi _‘pi)<ﬁi ‘

|
PAW combines the efficiency of the pseudopotential PW methods with
the accuracy provided by augmentation, i.e. all-electron approaches



Program Description Web site
ABINIT DFT(LDA,GGA); TD-DFT; www.abinit.org
NCPP; PW; PAW; TE; GO; PH
CASTEP DFT(LDA,GGA); PP; PW; TE;  www.accelrys.com/mstudio/
GO; CP-MD ms_modeling/castep.html
CPMD DFT(LDA,GGA); NCPP; PW; www.cpmd.org
TE; GO; CP-MD
Dacapo DFT(LDA,GGA); PP; PW; TE;  www.fysik.dtu.dk/CAMP/daca-

DoD-Planewave

FHI98md
PARATEC

PWSCF

VASP
CP-PAW
PWPAW
QUICKSTEP/
CP2K
SIESTA
DMol?
LmtART

FLEUR
WIEN2K
MOPAC2002
ADEF2002

(BAND)
Gaussian03

CRYSTALO3

GO

DFT(LDA,GGA); PP; PW; TE;
GO

DFT(LDA,GGA); NCPP; PW;
TE; GO; BO-MD
DFT(LDA,GGA); TD-DFT;
NCPP; PW; TE; GO

DFT (LDA,GGA); DE-PT;
NCPP; PW; TE; GO; PH; CP-
MD

DFT (LDA,GGA); USPP; PW;
PAW; TE; GO; PH; CP-MD
DFT(LDA,GGA); PAW; TE;
GO; CP-MD

DFT(LDA); PAW; TE; GO

DFT(LDA,GGA); PP; hybrid
GTO/PW

DFT(LDA,GGA); PP; NTO; TE;
GO; MD

DFT(LDA,GGA); AE; NTO;
TE; GO

DET; AE; LMTO; TE; GO; PH

DFT; AE; FLAPW; TE
DFT(LDA,GGA); AE; FLAPW;
TE; GO; PH
SE; TE; GO

DFT(LDA,GGA); TD-DFT; AE;
STO; TE

HEF; DFT; AE; GTO; TE; GO;
PH

HEF; DFT; AE; PP; GTO; TE; GO

po.html
cst-www.nrl.navy.mil/people/
singh/planewave/
www.fhi-berlin.mpg.de/th/
fhi98md/index.html
WWW.nersc.gov/projects/para-
tec/

www.pwscf.org

cms.mpi.univie.ac.at/vasp/

www.pt.tu-clausthal.de/~paw/
index.html
www.wfu.edu/~natalie/papers/
pwpaw/man.html
cp2k.berlios.de

www.uam.es/departamentos/
ciencias/fismateriac/siesta/
www.accelrys.com/mstudio/
ms_modeling/dmol3.html
physics.njit.edu/~savrasov/Pro-
grams/index_lmrart.htm
www.flapw.de
www.wienk.at/

www.schrodinger.com/
Products/mopac.html
WWW.SCm.com

WWwWw.gau ssian.com

www.crystal.unito.it

AE All-electron basis set

BO Born—Oppenheimer approximation

CP Car—Parrinello method

DFT Density functional theory

FLAPW Fully linearized augmented
plane wave

GGA Generalized gradient approximatio

GO Geometry optimization

GTO Gaussian-type orbitals

HF Hartree—Fock

L DA Local density approximation

MD Molecular dynamics

NCPP Norm-conserving pseudopotentia

NTO Numerical type orbitals

PAW Projector-augmented wave methog

PH Phonons

PP Pseudopotentials

PT Perturbation theory

PW Plane waves

SE Semi-empirical methods

ST O Slater-type orbitals

TD Time dependent

TE Total energy

=]

USPP Ultra-soft pseudopotentials




Local -MP2 for nonconducting crystals: CRYSCOR

Local correlation techniques as proposed by Pulay and Saebg,

and efficiently implemented for molecules in the MOLPRO program,
have been extended by C. Pisani and coworkers to non-conducting
periodic systems

Binding Energies per unit cell (au)

BEHF AE, BEMP2 BEEXP
Diamond 0.407 0.134 0.541 0.555
Silicon 0.227 0.083 0.310 0.345
SiC 0.324 0.113 0.437 0.475
BN 0.340 0.123 0.463 0.500

C. Pisanat al., J.Chem.Physl22, 094113 (2005)



Towards higher accuracy: Quantum Monte Carlo

VMC (Variational QMC) - stochastic integration method
to evaluate expectation values for a chosen trial wave function

DMC (Diffusion QMC) - projection technique to enhance
the GS component of a starting trial wave function

Current algorithms and computational resources permit QMC
calculations on systems up to about 1000 electrons

Exchange and Correlation in Silicon
diamond structure, (110) plane

(a) e:(/MC_ e)I(_DA (b) e;/MC i eé-DA 0.00186
0.00108
(0.000305

-0.00047

—0.00125

R.Q. Hoodat al., Phys. RewvB 57, 8972 (1998)



Relative energies of C ,, isomers
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ring | bowl cage

rng

Relative energy [eV]

bowl

J.C. Grossmaat al., Phys. Rev. Let#5, 3870 (1995)

cage




600 -

500 A

400 1

300 -

Energy difference [meV/atom]

100 -

Difference in energy per atom in the diamond plaas®in the3-tin phase of Si. The DMC
energy of 480 £ 50 meV/atom benchmarks the accustye different DFT functionals.
The gray region of the DMC bar represents the uaogy of the DMC energy.



[Example - hexagonal cell }

before after shiffed to '
symmetrization -

-
R

e in certain cell geometries (e.g. hexagonal cells) even meshes break the symmetry
e symmetrization results in non equally distributed k-points

e Gamma point centered mesh preserves symmetry




Hartree -Fock calculations of periodic systems

v

Constructing the basis of Bloch functions
as LCAO

wﬂ(r;k):ﬁ;emxfj (r —rﬂ)

Solving Hartree-Fock equations
for each k

F(k)clk)=slk)clk)e(k)

v

v

Evaluating Fock matrix elements in direct
space using the local basis set

Fav = (X0 FIX) =T + 25, +Cl, + X,

2

Determining the Fermi energy, E., and
forming the density matrix

P == X [€C, ()G k)

BZ n Bz

x6(E. - E, (k)) dk

Forming the the F and S matrices
in reciprocal space

Fuv (k) — ﬁzzeik[(]R—R')<X5,
R R
— Zeik[R" <X2
=

Fx5)

Fx5)

v

) 4

Calculating the total energy per cell

E[ot = Enucl +%ZZ P,uF\:/ (T,UIT/ + ZEV + F,uF\:/)
v R




