Electron density:

() =N PR %y Ry ) [ ds,dR,.. O,

Probability of finding one electron of arbitrary spin
within a volume element dr; (other electrons may be
anywhere).

Properties of electron density (non-negative):

1. [p(®)d;=N

s p(Fo>w)=0  p(f)cexp-220|F|]

F 3R )= B
3. PF=R)=max lim §+2z}p(r):o
Vp(F = R,)...cusp Lot

=> exchange-correlation functionals should respect
these conditions
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Pair density:

2,(%,%,) = N(N —1)j...j| (X, %, X ) [ dX,...0%,

Probability of finding a pair of two electrons with particular spins N —1
within a volume elements dr, and dr, (remaining N-2 electrons may pz(* X )_ p(y(l

X1 X, )=—
be anywhere). N

Non-correlated motion:

Non-negative quantity
Normalized to N(N-1), contains all information about electron correlation.
Symmetric

Antisymmetric wavefunction requirement => reduced density matrix v,
7, (X, %55 % X) N (N l)j Iql(xl, L X )LP (X1 5y Xgeuey Xy )AX;...0X,

Variables in ¥ which are not included in mtegration are primed.
v, changes sign when x, and X,
(or x,” and x,’) are interchanged 72 (% % %0, %) = =7, (%, %3 %, Ky )

Diagonal elements of reduced density matrix => pair density
(two-electron density matrix)

XX
I [
X

Probability of finding two electrons with the same spin at

the same pointis 0 !!! o N
P Py(%, %) = —p, (%, )

X



Small detour: HF pair density:

2HF (21’ )?2) = 2[det{¢1(F1)51(31) (I)z (?2)02 (Sz)}]2
(% %) = | E) |6, @) o[ o)+ @] |6 B o, (50| |on(s)f -
—2 ¢1(I’ )¢2(I’ )¢1(I’ )¢2(r ) O-1(51)0_2 (5 )0-1(5 )(72 (S )

pHF ,01= 02
) HFG #0, (¢ ¥ v r
1 2 I‘ I‘ P(rl)p(rz)
p Xl’ X,
Correlated electron motion Completely uncorrelated motion
HF 0= o—z(xl X ) 0 HF 101#07 (X1 X ) p(r )p(r)

=> “Fermi correlation”, “Exchange correlation” - described already at the HF level
Two electrons with the same spin cannot be at the same point in space.
This “correlation” does not depend on the electron charge, purely exchange effect.

Fermi correlation has nothing common with (““Coulomb’’) correlation defined for
post HF methods!




Pair density for completely uncorrelated motion:

_ L N-1 ,. .,
pz(xl’xz):Tp(Xl)p(xz)

Formulation of pair density in terms of electron density and (whatever) is the correlation:
P2 (%1, %) = p(%) p(%,) [1+ T (X %,) ]
!

Correlation factor - defines the difference between
uncorrelated and correlated densities:

f(X;%)=0 - completely uncorrelated case =>

=>wrong normalization of p, (N?)! (due to self-interaction) o Pz(X1 X,)
Introducing Conditional probability - probability of finding QX5 %) = (%)
electron at position 2 when there is just one electron at position 1.

Integrates to (N-1).

[Q(%,:%)dx, =N -1




Exchange-correlation hole: hye (X5 %,) = QX X,) — p(X,) = %—p()@)
PLX

The difference between conditional probability Q and uncorrelated = p(X,) T (X;X,)

(unconditional) probability of finding electron at x,.
h,. accounts for: exchange and coulomb correlation and self-interaction

Correlation - typically leads to depletion of electron density J.hxc (X; X,)dx, =-1

Schrddinger equation in terms of spin-independent pair density (two-electron part):

E. = <‘P > I@drdr ds,ds, Ingegration over 8 variables only !

i j>| |j

Probability of finding a pair of electrons at x,, X,
P, (X1, X,) =p(R)p(r) +p(F)hy (X X,)

Eee Z‘ F _f +T;dfzd51d32

J[p] Exchange, correlation, SIC




_Leep@)p@) oo Leep(he (Bi6) o o
/ ~
Classical J[p] QM contribution (correlation) + self-interaction

FORMALLY - exchange-correlation hole can be split into the Fermi hole and Coulomb hole
N N

Nye (5 5) = ht ™ (5 1) + 1™ (1)

Fermi hole - dominates coulomb hole
- contains self-interaction
- integrates to -1
- equals to minus density of electrons (same spin) h, (F, =TT ) =—p(F)

at the position of this electron (at the same point) X172 1 Pk

- negative everywhere
- depends also on the density at r, h, (%:;%) = p(T,)f (%;T,)
- no spherical symmetry

Coulomb hole - integrates to 0

- negative at the position of reference electron
- mirrors the cusp condition

[he(%,:%,)dr, =0




Example — H, molecule:

Exchange hole —only SIC
= It is just half of the density!

=1t does not depend on the electron position (r,)
—h, leads to depletion of electron density

—=HF method considers only hy and it results in too diffuse one-el.
Functions => underestimating V,,, low T, and also J, is underestim.

Coulomb hole

—Changes with the position of
reference electron

=For r,,—x h; removes halves
the electron from one atom and
puts it to the other one

Baerends & Gritschenko
J. Phys. Chem. A 101 (1997) 5383

Coulomb Hole Fermi Hole

Total Hole =

P PSR T
i (6:15) =~ p(0) =],
il t i: : —
N /S N
N/ ' \\-._l,-""/-- '
} }

Ryt
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Hamiltonian only contains parts depending on (i) one electron or (ii) on two electrons
=> Schrddinger equation can be rewritten in terms of one- and two-particle density matrices

Knowledge of ) o(F. r PF

- g = :EJ‘J‘ p(1) p(1,) drdr, +£J‘J‘ p(R)hye (75 1) drdr,
p(1) 2 n 2 r
hye (515)
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“Easy” solution of Schrodinger equation in terms of spin-densities (8 variables)
Is it possible?
Does the density contains all the information?

Answer: Hohenberg-Kohn Theorem (1964)

Properties of electron density (non-negative):

1. |[p(®)d;=N _
_ First attempts:
5 p(f—>0)=0  p(F)ocexp _-Nﬁl r I] j‘> Thomas-Fermi Model
(1927)
3 p(f—>R,)=max } fim g+22}p(r):0
Vp(F = R,)...cusp =L




Small detour: Uniform Electron Gas

Hypothetical system, “Homogeneous Electron Gas™
Electrons move on the positive background charge
Overall system charge is O

\olume Voo
Number of electrons N —> 0
Electron density (constant) N/V=p

“So — s0” model for simple metals; constant density is far from reality for molecules !
Only system for which we know exchange-correlation functional exactly.



Thomas-Fermi Model

Partially classical

Neglects exchange and correlation contribution

Crude approximation for kinetic energy (far from real molecules)
—=Poor performance!

NEVERTHELESS - Energy is given as a functional of electron density !

Toelp(F)] =5 (3r°) " [ (P

. 3 N\ g rN,. 1 n)p(rh,) . -
ETF[P(r)]:E(3ﬂ2)2/3jp5/3(r)dr—zj p(r )dr_I_EJ‘J‘p( 12p( 2)[:“,1d|,.2
12

Solution — variational principle under the constraint of number of electrons.

Numerous extentions and improvments:

« “chemical’” accuracy never reached (by a distance!)

» Even when V,, description improved problems stay — due to kinetic energy description.

* It was rigorously proofed that withing T-F model all molecules will dissociate into their fragments!



Slater’s approximation for electron exchange

Used before by Dirac:

Thomas-Fermi-Dirac model

1951 - to find an approximate way to calculated exchange in HF

—

—

E. - %H P(0)N (1) drdf, One needs a good approximation to hy

r12

Assuming spherically symmetric hole centered around the reference electron.
Assuming that density is constant within the hole and that it integrates to -1.

3 1/3 o - - -
Sphere radius s = (Ej p(f) " (Wigner-Seitz radius)
Simple interpretation — average distance between electrons
Approximate solution:  E, [p] = Cy [ p(F,)*'* dF,

Density functional for exchange energy!

Original work — Hartree-Fock-Slater (HFS) method known
also as X, method:
Exchange integrals replaces by 9 (3

(o is a parameter between 2/3 and 1)

1/3
full=-3 (2] o for) o




Density functional theory

Traditional ab initio: finding the N-electron wavefuntion ¥(1,2,...,N) depending on 4N coord.
DFT: finding the total electron spin-densities depending on 8 coordinates

Hohenberg & Kohn:
Theorem |: Energy of the system is unique functional of electron density

p(F)=>N,,{R,,Z,}=>V,, = H=E,¥
Theorem II: Variational principle ~ E,[p] < E[p]

E.[0,]= jpo(F)VNedr +T[po] +E, [po]

- P Kinetic energy of electron
system dependent y -l . _ . Coulomb repulsion
Honhenberg-Kohn tunctional: Non-classical interaction
E,[o,]= Ipo(r)VNedr +F.[oo] (self-interaction, exchange, and
correlation)

All properties (defined by V,,,) are determined by the ground state density
H&K only proofed that F, exist, however, we do not know it
H&K do not give a direction how can we find density

H&K theorems allow us to construct the rigorous many-body theory using density as a
fundamental properties

Flp(F)]=TLp(r)]+I[p(F)]+E,,[o(F)]



The Second Hohenberg-Kohn Theorem:

“Density functional F[p] will give the lowest energy of the system only if the p is a true

ground state density.”
~ VARIATIONAL PRINCIPLE

EO < E[E] = T[E] + ENe[E] + Eee[ﬁ]

Proof — literally trivial
1. Trial density defines its own Hamiltonian, thus, wave function:
2. Applying variational theorem for this trial wava function:

(FJANP) = TIR1+ Vi B+ [ BTV OF = EIF] 2 Eqlp,] = (¥,

H(F)>H > ¥

~

H

~

H

v,

NOTE:
Strictly VP holds only for “exact” functional.
Approximate functionals can easily give energies below a true minimum (different from HF).

Mathematical vs. Physical meaning of VP.




Kohn-Sham Approach — A Basic Idea

E, = min (Flpl+ [ p(P) V.o

HK theorems {
Flp(r)] = Tlp(F)]+ I[p(N]+ E . [p(F)]

Kohn-Sham:
» Most problems of Thomas-Fermi type approaches come from kinetic energy
« Kohn-Sham — establishing a similar strategy as used in Hartree-Fock method

Hartree-Fock method from a different point of view:

« Slater determinant — approximation to the true N-electron wave function

* It can be viewed as the exact wave function of fictitious system of N non-interacting
electrons moving in the effective potential V. (“electrons” viewed as uncharged fermions
not explicitly interacting via Coulomb repulsion) N

« Kinetic energy of such system is then exactly T, =- % > <Xi‘v2‘Xi>

* One electron functions, spin-orbitals, obtained from variational principle

E.- = min <(I)SD 1A'+\A/Ne +\A/ee CDSD>

Ogp—N

* In analogy with above “non-interacting” electrons K&S introduced a non-interacting reference
system for particles interacting via effective local potential V¢, that in some way includes desired
Interactions between particles.



—Hamiltonian with effective local potential Vg:

—> Slater determinant is then exact wave function:

= One electron functions obtained (in analogy
with Fock equations) by solving Kohn-Sham
equations, using a one-electron Kohn-Sham
operator f<S:

= Resulting orbitals ~ Kohn-Sham (KS) orbitals

—> Effective potential Vg is such that the density
constituted from KS orbitals exactly equals the
ground state density of “real” system with
interacting electrons

(Pl()_{l) (PZ()_{l)
1 (pl()_{Z) (Pz()?z)
®S :m
(pl(Y(N) (PZ()_{N)
f K 0; =&,

£ =—%v2 +V,(T)

ps(F) =D > i (7.9) =po(F)




Kohn-Sham Approach

Adopting a better expression for kinetic energy: 1N
g vt kit e =330l
Using exact kinetic energy of the non-interacting reference system thathas s =5 —~\ 7 .
the same density as a real one.
Such kinetic energy cannot be the same as a true one; it is expected to be Ts#T
close.
Residual part of kinetic energy (T) is shifted to the functional.

Ewc[p1= (TIp] - Ts[pl)+ (E.[p]-J[p]) = Te[pl + E o lp]

Kohn-Sham functional is then: Fip(F)]=Ts[p(F)1+I[p(F)]+ Exc[p()]

_—/

Kinetic energy Coulomb repulsion
of non-interacting of uncorrelated
reference system densities

A 4

Exchange-correlation functional
Includes:

Electron exchange

Electron correlation

Residual part of Kinetic en.




Putting things together:

E[p(F)]= Ts[p]+J[p]+ Exc[p]+E . [p]

—Tlp]+ 2 | PIOIP(R) gege B [p]+ [Viep(P)dr

12

3l 18 S5 flof& ) o) axgr. Eclol 232 o o,

Applying
vatiational
principle

v

[_%VZ "[J‘ pgfz) dr, + Vi (1) _Zz_A}j ¢ = &0

Vs (T)

12 A r1A

1 _
(_EVZ + Vg (rl)j Gi = &0

Contains all problematic terms

Satisfying the conditions stated

for non-interacting reference system

_ [¢ M Z
Eveﬁ(r)__[p( )dr + V. (1) zr—A
A 1A

12

Iterative solution.

—> What is V. ?




Kohn-Sham method —in a nut-shell:

Non-interacting reference system with effective local potential V. introduced:

~ 1 N ) N
Hs :_Ezvi +sz(ri) \
| | £ KS
B} B} ) F™ o =0
o(%) 0 (%) - ou(%)
. (%) @,(%) on (%) Kohn-Sham equations
O =—u | s s )
VN oLy ivm
. _ _ 2
(Dl(xN) ¢2(XN) P (XN)

Problematic kinetic energy term is divided between non-interacting system and exchange-
correlation functional:

FLo(P)]=Ts[o(F)]+ I[p(F)]+ Ex[(F)]

E.c[p1=(Tlpl-Ts[pl)+(E.lp]-I[p]) =T.[p]+E L]

T-=T-Tg ... the residual part of kinetic energy



How does it work:

ELpMI=T. o1+ o1+ Exclpl+ By lpl=Tulol+ [[ 2L 2L drar, + £, o1+ [V, p(r)ar

12

:_%Ztl:<¢7i ‘V2‘¢i>+%2’?‘,2’::j”¢i(i1)2 é ‘¢j(iz)‘2 dx,dx, +Exc[p(r)]_iji%

i 1A

2 —
dX,

v (%)

Applying variational principle we solve Kohn-Sham equations in iterative way
Everything “unknown” is in Ey.

If we know E, - we have an EXACT method
E,c is not known => we have to rely of approximate exchange correlation functionals

Exchange-correlation functionals:

|. local density approximation - Eyxclpl
Il. Generalized Gradient approx. - Ey:[p,Vp]
lll. Hybrid density functionals - Eyxclp,Vp] + combines with “exact’=HF exchange

Local Density Approximation: (LDA ~ LSD ~ SVWN)
Ec derived for the model of uniform electron gas

x 1 s y Slater

gc (fit of QMC data) VWN
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