

Calculates thermodynamical properties of the macroscopis system from the properties of individual molecules (structure of molecules, inter-molecular interactions).

Bridge between "classical" thermodynamics and molecular physics

Classical thermodynamics makes no assumption about the structure of the matter (existence of atoms/molecules is not required !).

Macroscopic (TD) properties must be determined by microscopic (molecular) properties

Example:

1 mL of Ar
(T, p)
$\sim 10^{19}$ atoms

Quantum mechanical solution

- it is possible
- numerically too demanding (impossible)
- it is impractical (probabilistic character)

Classical description

- $\left\{q_{i}, p_{i}, t_{0}\right\}$ - complete system description
- computationally too demanding

$$
E_{n_{x}, n_{y}, n_{z}}=\frac{h^{2}}{8 m}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right)
$$

non-interacting

\Rightarrow STATISTICAL METHODS

Limiting to typical/average behavior - getting a true average is still impractical ! Instead of average we should consider "only" THE MOST PROBABLE BEHAVIOR \rightarrow It can be used only for sufficiently large system

STATISTICAL THEORMODYNAMICS

- Logical consequence of atomistic theory

1859 - Maxwell distribution law
1869 - Mendělejev
1871 - Boltzmann - generalization: Maxwell-Boltzmann distribution

- relationship between entropy and probability

1895 - conference in Lübeck
1896 - Boltzmann $\Delta S=k \cdot \ln \left(W_{2} / W_{1}\right)$
1900 - Boltzmann, Gibbs - formulation of statistical theormodynamics

We have to give up on the detail description of mechanical variables of each molecule. INSTEAD - analysis of possible values - finding the most probable values

Mechanical properties of molecules
 Thermodynamical properties of systems
 Changes towards equilibrium
 Reversible changes \longleftarrow Irreversible changes (in general)

System: spontaneous - irreversible - process Individual molecules: they can always go back to its original position.

Ideal gas (no interactions between molecules):
Driving force for mixing must be entropy -

- Increase of entropy doesn't depend on individual molecules => the property of the system.

Entropy

S ... aditive
W ... Number of distinguishable states of the system ... multiplicative
$S=\mathbf{a} \ln \mathbf{W}+\mathbf{b}$

Ideal gas expansion from V_{1} to $V_{\underline{2}}$

$$
\Delta S=S_{2}-S_{1}=n R \ln \frac{V_{1}+V_{2}}{V_{1}}=k \cdot \ln \left(\frac{V_{1}}{V_{1}+V_{2}}\right)^{-N}
$$

All distribution of N molecules between V_{1} and V_{2} have the same energy => Entropy driven process - depends on number of possible states (probability with respect to all possible states)

$$
\Delta S=S_{2}-S_{1}=a \ln \frac{W_{2}}{W_{1}}=a \cdot \ln \left(\frac{V_{1}}{V_{1}+V_{2}}\right)^{-N} \quad \Delta S=S_{2}-S_{1}=k \ln \frac{W_{2}}{W_{1}}
$$

Boltzmann-Gibbs formulation of statistical theormodynamics (including quantummechanical description of the system)

System is in one of the available quantum states
(originally: system is characterized by a point in a phase space)

Mechanical vs. non-mechanical properties

Ensemble - Mental construction of large number of systems characterized by the of systems same TD restrictions.

Microcanonical ensemble (N, V, E)
Canonical ensemble (N, V, T)

POSTULATE (1). Ensemble average corresponds to TD average.
Mean value of arbitrary mechanical property M (in a real system it would be obtained by time averaging aver the sufficiently long period of time) is equal to the mean value obtained for the ensemble; systems of this ensemble must reproduce TD state of real system. (Strictly speaking it holds only for $N \rightarrow \infty$)

POSTULATE (2). Principle of equal a priori probabilities.
For the ensemble representing isolated TD system (microcanonicle ensemble) all the ensemble elements are distributed with the equal probability among all quantum states available for N, V, E.

Macroscopic system (N, V, E)

=> Microcanonical ensemble (N, V, E) consisting of \mathbb{A} systems Available E_{j} are determined by N (number of molecules and their molecular properties) and by V

Postulate (2) - each of $\Omega(\mathrm{Ej})$ states of the system is equally represented in the ensemble $=>\quad \mathbb{A}=n \Omega(E)$
\mathbb{A} can be arbitrarily large
Postulates (1) a (2) - ensemble average of mechanical properties ~ corresponding TD value
Connection between molecular and macroscopic properties.

Totally impractical

Simple application - Boltzmann distribution law
Distribution of large number of molecules among available energy levels (regardless other characteristics)

N totally independent molecules (l L of gas)

- ideal gas - with respect to kinetieenergy the potential energy can be neglected
- equilibrium conditions - direct/nolecular collisions
- colisions with the container wall
\Rightarrow Canonical ensemble wher systems are individual molecules N (=1), V, T
Molecules are in the same container - same temperature Each molecule can be in one of the i states characterized by ε_{i} $\varepsilon_{i} \rightarrow \mathbb{N}_{i} \ldots$ number of systems (molecules) with energy ε_{i}

Represents one member of microcanonical ensemble V, N is known, E is determined by the temperature T
(1) + (2) mean values of system properties

Mean number of molecules N_{i} in the state i (energy ε_{i}) must be determined

$$
=>\text { distribution }\left\{\mathrm{N}_{\mathrm{i}}, \varepsilon_{\mathrm{i}}\right\}
$$

Schrödinger equation for particle in the 3-D box:

$$
\left.\begin{array}{l}
\psi_{n_{x}, n_{y}, n_{z}}(x, y, z)=\sqrt{\frac{8}{L_{x} L_{y} L_{z}}} \sin \left(\frac{n_{x} \pi}{L_{x}} x\right) \sin \left(\frac{n_{y} \pi}{L_{y}} y\right) \sin \left(\frac{n_{z} \pi}{L_{z}} z\right) \\
E_{n_{x}, n_{y}, n_{z}}=\frac{h^{2}}{8 m}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right) \\
\begin{array}{ll}
1 \text { L argon: } & \mathrm{m}=39.95 \text { a.u. } \\
\mathrm{L}_{\mathrm{i}}=0.1 \mathrm{~m}
\end{array}
\end{array}\right\} \quad E_{n_{x}, n_{y}, n_{z}}=2 \times 10^{-1}\left(n_{x}^{\mathrm{J}}+n_{y}^{2}+n_{z}^{2}\right) \quad\left[\mathrm{J.mol}^{-1}\right]
$$

$\mathrm{E}(\mathrm{J})$	nx	ny	nz	Lx	$\mathrm{E}(\mathrm{J} / \mathrm{mol})$
$3.31 \mathrm{E}-39$	1	0	0	0.1	$1.99 \mathrm{E}-15$
$9.92 \mathrm{E}-39$	1	1	1	0.1	$5.97 \mathrm{E}-15$
$1.98 \mathrm{E}-38$	2	1	1	0.1	$1.19 \mathrm{E}-14$
$9.92 \mathrm{E}-37$	10	10	10	0.1	$5.97 \mathrm{E}-13$
$9.92 \mathrm{E}-35$	100	100	100	0.1	$5.97 \mathrm{E}-11$

distribution of $\left\{\mathrm{N}_{\mathrm{i}}, \varepsilon_{\mathrm{i}}\right\}$ - boundary conditions $\quad \sum_{i} N_{i}=N \quad \sum_{i} \varepsilon_{i} N_{i}=E$
Permutation within one energy level do not lead to a new distribution

$$
W_{n}=\frac{N!}{N_{1}!N_{2}!\ldots .}=\frac{N!}{\prod_{i} N_{i}!} \longrightarrow W=\sum_{n} W_{n}=\sum_{n} \frac{N!}{\prod_{i} N_{i}!}
$$

Total number of distinguishable states

Mean value of N_{i}
=> Search for the W_{n} maxima respecting the additional conditions

β Can be determined by calculatins of mean value of known molecular property of ideal gas:
=> Kinetic energy for one degree of freedom

$$
\bar{\varepsilon}=\frac{1}{2} k T
$$

$$
\left.\begin{array}{r}
\bar{\varepsilon}=\frac{\sum_{i} \varepsilon_{i} N_{i}}{\sum_{i} N_{i}}=\frac{\sum_{i} \varepsilon_{i} e^{-\beta \varepsilon_{i}}}{\sum_{i} e^{-\beta \varepsilon_{i}}} \\
\varepsilon_{i}=\frac{p_{x i}^{2}}{2 m}
\end{array}\right\} \left.\rightarrow \bar{\varepsilon}=\frac{\sum_{i} \frac{p_{x i}^{2}}{2 m} e^{-\beta \frac{p_{x i}^{2}}{2 m}}}{\sum_{i} e^{-\beta \frac{p_{x i}^{2}}{2 m}}} \longrightarrow \bar{\varepsilon}=\frac{\int_{-\infty}^{+\infty} p_{x}^{2} e^{-\beta \frac{p_{x}^{2}}{2 m}} d p_{x}}{2 m \int_{-\infty}^{+\infty} e^{-\beta \frac{p_{x}^{2}}{2 m}} d p_{x}} \underbrace{\int_{-\infty}^{+\infty} x^{2} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a^{3}}}}_{\int_{-\infty}^{+\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}} \right\rvert\, \begin{gathered}
\bar{\varepsilon}=\frac{1}{2 \beta}
\end{gathered}
$$

