
Mechanical properties of molecules 
 
 
Position xi, yi, zi 
Momentum pxi, pyi, pzi 
Mass mi 
 
Kinetic energy Eki 
Potential energy Uij 

Thermodynamical properties 
of the system 
 
Temperature T 
Pressure p 
Mass m 
 
Entropy S 
Internal energy U 
Gibbsova energie G 

STATISTICAL 
MECHANICS 

Calculates thermodynamical properties of the macroscopis system from the properties of 
individual molecules (structure of molecules, inter-molecular interactions). 

1 litre 
of gas 

Bridge between “classical” thermodynamics and molecular physics 



Classical thermodynamics makes no assumption about the structure of the matter (existence 
of atoms/molecules is not required !). 
 
Macroscopic (TD) properties must be determined by microscopic (molecular) properties 

Example: 

1 mL of Ar 
     (T, p) 
~ 1019 atoms 

Quantum mechanical solution 
• it is possible 
• numerically too demanding (impossible) 
• it is impractical (probabilistic character) 

Classical description 
• {qi, pi, t0} – complete system description 
 

• computationally too demanding 

⇒STATISTICAL METHODS 
Limiting to typical/average behavior  -  getting a true average is still impractical ! 
Instead of average we should consider “only” THE MOST PROBABLE BEHAVIOR 
   It can be used only for sufficiently large system 

non-interacting 
vs. 

interacting 

22 22

, , 2 2 28x y z

yx z
n n n

x y z

nn nhE
m L L L
 

= + +  
 



STATISTICAL THEORMODYNAMICS 
•  Logical consequence of atomistic theory 
1859 – Maxwell distribution law 
1869 – Mendělejev 
1871 – Boltzmann – generalization: Maxwell-Boltzmann distribution 
 - relationship between entropy and probability 
1895 – conference in Lübeck 
1896 – Boltzmann      ΔS = k · ln(W2/W1) 
1900 - Boltzmann, Gibbs – formulation of statistical theormodynamics 



Mechanical properties of molecules 
 

Thermodynamical properties 
of systems 

We have to give up on the detail description of mechanical variables of each molecule. 
INSTEAD – analysis of possible values – finding the most probable values 

? 
Changes towards equilibrium 

Irreversible changes (in general) 

No analogy 

Reversible changes 

System:  spontaneous – irreversible – process 
Individual molecules: they can always go back to 
its original position. 

Ideal gas (no interactions between molecules): 
Driving force for mixing must be entropy –  
- Increase of entropy doesn’t depend on individual 
molecules => the property of the system. 



Entropy 
S … aditive 
W ... Number of distinguishable states of the system ... multiplicative 
 
S = a ln W + b 

Ideal gas expansion from V1 to V2 
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All distribution of N molecules between V1 and V2 have the same energy 
=> Entropy driven process – depends on number of possible states (probability – 
with respect to all possible states) 



Boltzmann-Gibbs formulation of statistical theormodynamics (including quantum-
mechanical description of the system) 

System is in one of the available quantum states  
(originally: system is characterized by a point in a phase space) 

Calculations of 
mechanical TD properties 

Evaluation of properties for each available 
quantum state of the system 

Average value 

Mechanical vs. non-mechanical properties 
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Microcanonical ensemble (N, V, E) 

Impermeable 
adiabatic walls – 
heat isolation 

Rigid diathermic walls 
- Allows for the heat transfer 
- Melecules can go through 

Canonical ensemble (N, V, T) 

Ensemble 
of systems 

- Mental construction of large number of systems characterized by the 
same TD restrictions. 

POSTULATE . Ensemble average corresponds to TD average. 
Mean value of arbitrary mechanical property M (in a real system it would be obtained by 
time averaging aver the sufficiently long period of time) is equal to the mean value 
obtained for the ensemble; systems of this ensemble must reproduce TD state of real 
system. (Strictly speaking it holds only for N → ∞) 

POSTULATE . Principle of equal a priori probabilities. 
For the ensemble representing isolated TD system (microcanonicle ensemble) all the 
ensemble elements are distributed with the equal probability among all quantum states 
available for N, V, E. 
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Macroscopic system (N, V, E) 

=> Microcanonical ensemble (N, V, E) consisting of  systems 
Available Ej are determined by N (number of molecules and 
their molecular properties) and by V  

Classical description:  state of the system = point in the phase  
       space 
 Ensemble – set of points in the phase space 
Quantum mechanics:   available/allowed states (energies) 

Ej, Ω(Ej) 

Degeneration – number of 
realization of system with the 
energy Ej 

Individual systems – equivalent at the TD level 
                 – different at the molecular level 

Postulate  - each of Ω(Ej) states of the system is equally represented in the ensemble 
   =>        = nΩ(E) 
 can be arbitrarily large 

 
Postulates  a  - ensemble average of mechanical properties  ~ corresponding TD value 

Connection between molecular and macroscopic properties. 
 
Totally impractical 



Simple application – Boltzmann distribution law 

Distribution of large number of molecules among available energy levels (regardless other characteristics) 

N totally independent molecules (l L of gas) 
• ideal gas – with respect to kinetic energy the potential energy can be neglected 
• equilibrium conditions - direct molecular collisions 

  - collisions with the container wall 
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⇒ Canonical ensemble where systems are individual molecules 
 N (=1), V, T 
 Molecules are in the same container – same temperature 
 Each molecule can be in one of the i states characterized by εi 
 εi → Ni   ...   number of systems (molecules) with energy εi 

Represents one member of microcanonical ensemble 
 V, N is known, E is determined by the temperature T 
 
+ mean values of system properties 
Mean number of molecules Ni in the state i (energy εi) must be determined 
 

 => distribution {Ni, εi} 
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Schrödinger equation for particle in the 3-D box: 
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1 L argon: m = 39.95 a.u. 
  Li = 0.1 m 

( )1 52 2 2
, , 2 10

x y zn n n x y zE n n n−= × + + [J.mol-1] 

E(J) nx ny nz Lx E(J/mol) 

3.31E-39 1 0 0 0.1 1.99E-15 

9.92E-39 1 1 1 0.1 5.97E-15 

1.98E-38 2 1 1 0.1 1.19E-14 

9.92E-37 10 10 10 0.1 5.97E-13 

9.92E-35 100 100 100 0.1 5.97E-11 



distribution of {Ni, εi} – boundary conditions i i
i

N Ee i
i

N N

Permutation within one energy level do not lead 
to a new distribution 
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Total number of distinguishable states 

Mean value of Ni Averaging over all distributions 

Using just Ni for the most probable distribution Wn 

=> Search for the Wn maxima respecting the additional conditions 
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α 



β Can be determined by calculatins of mean value of known molecular property of 
ideal gas: 
=> Kinetic energy for one degree of freedom 
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