Boltzmanova-Gibbsova formulation of statistical thermodynamics

N,V

SYSTEM — particular thermodynamical system (1 mol of gas in volume V)

Macroscopic — perfect replica of the system
Microscopic — individual systems are not exactly identical

d

Defined by N,
+

interactions

V : : : :
l Unambiguously define available energy eigenvalues E;

and corresponding degeneration Q(E))

Principle of equal a priori probabilities

Each of the Q(Ej) states must be represented in the ensemble equally

Ensemble characterized by N, V, T
—=Denoted CANONICAL ENSEMBLE

= Diatermic walls between systems, ensemble thermally isolated (adiabat. walls)
Total of A systems is placed in the heatbath (T)

Individual systems have the same temperature T, however they may have different energies E;.

Canonical ensemble ~ 1 system of microcanonical enesemble



N, V. T

(Contains

A systems)

Whole canonical ensemble
thermally isolated from env.
—Represents one system of

—4 £ | ¢
W I Y.
E E E
NV NV NV
E E E

microcanonical enesemble

Individual systems of canonical ensemble have
different energies E;, Za'E' .

It must hold: ~
a; ... Number of systems having energy E;

Condition: Zaj — A
j

{a} ... distribuce soustav do energetickych hladin

Each microcanonical enesemble has
energy K.

Principle of equal a priori probabilities
v

Each distribution{a} is equally probable.
Must have the same weight in ensemble

average.

« All E; must be taken into consideration

- Individual systems (E;) are represented in
canonical ensemble proportionally to — Q(E;)
* E;(N,V) ... number of occurrences depends on
degeneration

“Population”

_{jl EJ! a}
—
Characterized by E;

System |

Number of realization of systems (N,V,T)

{a} ... distribution



Number of realization of distribution a

Probability that the microcaninical
system has distribution (J, a;, E;)

Average value of _
mechanical property in M =2 M;P,
canonical ensemble: J

Instead of using average — we will
use the most probable distribution

{a}

W(a):Hak.
P &1 Za:W(a)an
A A

Al Summing over a — all possible

distribution over all systems of
microcanonical ensemble.

D W(a)

Number of canonical
systems in the state j.

Distribution a; has maximum number of
realization when all a; are equal.
Such distribution is rather narrow for large

A,

j

|

a, =

iZEW(a )3,
A A W(@)

*

a,




Number of possible ways to divide N distinguishable systems into groups:

Distinguishable objects N!
N! N!
Indistinguishable withi -
ndistinguishable within groups NJ(N=N)! N, IN,!
Binomial expansion (Only N,+N,=N)

~
<7 ONL

N _ N N! N—=Np\,N; _
(x+y) _ZNll(N—Nl)!X Yh =2, NN,

N,

Binomial coefficient

Multinomial expansion




Binomial expansion

N C N! N-N; \,N * N! N; N
X+Yy) = XT Ty = Xy
(x+y) NZO N,I(N = N,)! V=2, N, IN,! d

N ! Searching the maximum of f(N,)
(Nl) NN | * N, and N are large — f(N,) considered them as continuous
N, (N —N,)! :
1 1 variables

« since In(x) is monotonic function of x : seraching for
maximum of In f(N,)

dln f(N,)
dN,

=0 —%Nl*_

il
2

Taylor expansion
(1%t derivation is zero)

|nf(|\|1):|nf(|\|f)+2

In f(N,)=In f (Nf)—%ln f(N;)=Inf (Nf)—%(Nl—Nf)z



Gaussian distribution

Standard deviation O~ \/ﬁ

Gaussovsian distribution — delta function in the large N limit
The most probable distribution is a good representation of the average distribution

The same game can be played for multonomial distribution:

sharp maximum for N,=N,=N;=---=N,=—



Number of realization of distribution a

Probability that the microcaninical
system has distribution (J, a;, E;)

Average value of _
mechanical property in M =2 M;P,
canonical ensemble: J

Instead of using average — we will
use the most probable distribution

{a}

W(a):Hak.
P &1 Za:W(a)an
A A

Al Summing over a — all possible

distribution over all systems of
microcanonical ensemble.

D W(a)

Number of canonical
systems in the state j.

Distribution a; has maximum number of
realization when all a; are equal.
Such distribution is rather narrow for large

A,

j

|

a, =

iZEW(a )3,
A A W(@)

*

a,




Searching for distribution a*, that maximizes W(a) under the boundary conditions given:

9 InW(a)—a) a,—3> aE, =0 >—Inaj—a—1-BE; =0
08, K K l
a=e e’
a o PRV
o _ 1 P=—1= 1
e ==Y e j O, (V.N) S
OINNGES o o .

i
Q(N,V,T)=3 e 50
i

E 1 —E;(N,V)/KT
Average value of mechanical property: ~ E(N.V.T)= 62 E;(N.V)e
]

Corresponds to the thermodynamic energy E (postulate)



Average value of _
mechanical variable in M =2_
canonical ensemble J

M;F;

QNV,T)=) e ™™™
i

E(N V,T)= %z Ej (N ’V)e_ﬁEj(N,V)
j

Pressure of the system in state | P;
Work done on the system dE; = p;,dV
Change of the energy level due to the volume change = _(ﬁ]
oV ),
P _ LBV e
BNV T) = Q;[ o ]Ne
OE — _
-~ | =---=-pb+ E)-/PpE _
_ avjw p+B(PE)-BP (aEJ +ﬂ(frpj .
(@) ' L _ L — —
= @j - :_ﬁ_(ﬁ) N )\ s OB Iny
- op NV N
Cccical 10 (aﬁj +1[ op J - 6:konst.
assical TD: e — =—
N )y TLOWT) )y, T



_ konst.

5 — T We will show that k is universal constant (Boltzmann constant)

Two systems in thermal contact
AN B A: Np, Vi, T => available energy levels {E;,} with distribution{a;}
B: Ng, Vg, T => available energy levels {E;g} with distribution{b;}

| |
Al : Ll : Number of states of AB ensemle is a product of number of states for each
[Ta 10! of the systems.

k ]

W (a,b) =

Setting up canonical and microcanonical ensemles for pair of systems A and B and we search for the
most likely distribution

dYa=A >b=B=A
j j

Z(aj E,+Db; EjB) =E Only one relationship must be satisfied for energy !

J

. ) ~PEin o~ PEj
=> Probabilities are proportional to the e e i PP
same constant for systems in thermal ij Q Q -~ iAT B
contact ! A B




dE=>E,dP, +Y PdE,
Connecting classical and statistical TD: j j

Entropy: X [

- 5qrev o 5Wrev
Q(N,V,T)= Ze_ﬁEi(N'V)
]

f 3,E,E,, E,.. —|n{zeﬁa}

df =



dE=>E,dP, +> P.dE,
Connecting classical and statistical TD: T g

Entropy: X [

\ = 5qrev - 5Wrev
Q(N ’V ’T) — Ze_ﬁEj(NlV)
j

of of
pdf = [%]E ,dﬁJrzk:[a—Ek] IdE" Total derivative
f 8,E,E,E,,.. —In{ZeﬁEJ} ,. J 5
J
= l —) Ee & 3o 0K
df = —Ed3 -5 PdE, Zk: T g P sp
J Q Q
> d InQ+GE =389,
Reversible heat l
Internal energy change Derivative of the state
function
Work done on the system =P is an integration factor
Change of volume dV ~ change of energy levels E, Orev
For original distribution a; : a; dE; is the work done q
. 1- 1) 2" law of TD
Corresponding sum — reversible work performed on the ensemble




dE=>E,dP, +Y PdE,
Connecting classical and statistical TD: j j

Entropy: X [

= 5qrev - 5Wrev

>d InQ+GE =péq,,

l

Reversible heat E
Internal energy change d|InQ+ E |_ 99
KT KT
Volume work done on the system _
E| 49
dlkInQ+=|= "2
Q T T

dQ 2" Jaw of theormodynamics
56 T =0 =>» (dQ/T) is a total differencial of state
function =» definition of etnropy S

4

S :$+kan+conSt.

Constant independent of N, V, T
It set to zero



Connecting classical and statistical TD:

Q(N,V,T)=> e Bt Canonical partition function
i
[8InQ] B
oT v
[(’ﬂnQ] B
AN

S :$+kan+const.

v

v

v

v

A=E-TS



Connecting classical and

Q(N,V,T)=> e B
j

statistical TD:

Canonical partition function

A 4

v

A=E-TS

Obtained from quantum

[(’ﬂnQ] 5 E : E_sz[aan]
o7 Jyu KT2Q KT 2 I Iy
N )+ KTQ KT
E 8InQ]
S=—+klin const. » S=KkT +kln
TjL Q+ [8T NV Q

ANV, T)=—kT InQ

Calculation of theormodynamical properties

mechanics (E))

Q(N,V,T)= ZQ NV, E g E(NV)/KT
E

from the molecular properties

Instead of sum over states we can sum over energy
level and take into consideration the degeneration




2nd Jaw of thermodynamics
N,V/2,T Q,(N,V,E)
AN,V,T)=—KT InQ

Q(N,V,T)=> 2 N,V,E e E"WW Removing the wall results
In Increased number of
allowed states E; (~ VV)

Number of states with energy E Q(N,V,E)
cannot become lower due to barrier removal —
original states are still available NV, T Q,(N,V,E)

Considering izothermic process:

2,(N,V,E) > (2 (N,V,E)

Q-Q=> 2, NV,E—-2 NV,E e >0
E

Q _
AA=A, — A =—KTI
A—A= "9

1

In general: lifting up certain restrictions leads to
an increased number of available quantum states;
Population of new states => spontaneous process




Grand Canonical Ensemble

pVoowVvoowV | Diathermic permeable walls allowing heat

T T exchange and molecular transport
BV o opViopV
T T T

Adiabatic walls —
i T T thermal isolation

ay; --- Number of systems in ensemble having N molecules and energy E;

N
ZN:Z:aNi =4 Number of systems in ensemble
< > > ayEy=E Total energy of GCE ensemble - constant
N j
> ayN=N Number of molecules in the ensemble
N

Grand Canonical Ensemble represents one system of microcalorimetric systému (N,V,E).
= Principle of equal a priori probabilities

Boundary conditions GCE — similarly to CE — searching W a, = %
for the most probable distribution. HH -



Averaged values of mechanical variables in GCE:
— —BEy; — .
EVGy =Y 5e e ™

N ]

E V,ﬁ,’}/ :%ZEENJ V e_ﬁENjVe*’YN :_[8”\,:]
j V.,y

_ OE _ 1(0In=
pVﬁ,v sz[ NJ] 6EN,Ve VN_B[ y ]
J By

— 1 _BE.V dln=
NV.By =23 3 Ne ™ e ™ —_[ 5 ]
— N ] Y V.3






88f ] E,
ENJ 8,7, Enjr

l Using equations for E, N, p
= —EdB—Ndy— 5ZEP dE,,

Considering the volume work only l
df =—Ed3— Nd~ + 8pdV
| +d 6E +d /N
d f+B8E+~yN =3dE+3pdV +~dN

TdS = dE + pdV — pdN

1
i



Grand Canonical Ensemble

EVT,u =33 e Y Memna Partition function GCE => Describes open
N iIsothermal systems

Q(N,V,T)=3 e 5t
i

EV,T,u=> Q(N,V,T)e™
N
A=e"" o =kTInx A..Absolute activity

EV, T, =) QNV,T)A"
0

Partition function GCE — for certain cases it is more suitable than canonical one.

\

G=uN=E+pV-TS
pvV =KTInZ V,T, u

) pV is characteristic function of GCE



Isothermal-isobaric Ensemble

Flexibal diathermic walls
Heat transfer and flexible volume

Neprospustne
adiabatické stény —
teplena 1zolace

g %
E‘ Partition function
— E E
1 0 e == e
E E E Y
G=—kTInA(N,T, p) Gibbs energy is characteristic

function of IIE




Any other set of independent variables can be used for the definition of ensemble and
corresponding partition function can be derived

All the ensembles are equivalent in the limit for large systems in the equilibrium :
Q(N,V,T)=> 2 NV,E e "WV
E
Probability of ,,observation of particular energy value ... P(E)
P(E)=Cf2 E e ¥/

Extremely narrow Gaussian distribution for large N (C is normalization factor)
= E=E =E

\ 4
Q(N,V,T)=2 N,V,E o E(NV)/KT

Energy is in ensemble uniformly distributed into individual systems — small fluctuations

=> Canonical ensemble changes to microcanonical ensemble!

We can select an ensemble based on the “mathematical convenience”, regardless TD variables
describing the system.



Microcanonical ensemble

2(N,V,E)
S N,V,E =kIng2

[\

Canonical ensemble

Q(N,V,T)= ZQ N,V,E e E(NVIK
E

ANV, T)=—KTInQ dA=—SdT — pdV -+ udN

S—kT[aan
T

] +kInQ

Grand canonicg(f ensemble \

SEV,T,u 7/2200\',\/’ E)efE NV /KT QN /KT
y N E

pV =KTInZ V,T,u d pV =SdT + Ndu+ pdV

S:kT[é‘lnE
oT

] +kInZ=
wV

Isothermal-isobaric ensemble

N

é(N,T; p):ZZQ N,V,E e—E/kTe—pV/kT
E V

G=-kTINA(N,T,p) dG=—SdT +Vdp+ pdN

S:kT[
oT

oln A

] +kinA
N,p




Microcanonical ensemble Canonical ensemble

f2(N,V,E) ! Q(N,V,T)_E :Q NV E e ENVIK
_ P M .
S N\V,E =kIn{2 dS_TdE+_T dv T dN

A(N,V,T)=—KTInQ dA=—SdT — pdV + udN

1 alny?

dInQ
= S=kT +kin
KT OE )yv [ oT ]N,v Q
oln 2 _
P _ E_sz[aan]
KT NV e T )
dln 2 _ _
B p:kT[aan] u:—kT[aan]
KT ON V.E oV N,T ON V., T
Grand canonical ensemble Isothermal-isobaric ensemble
= V,T,,LL :EZQ(NN,E)e{ N,V /kTeuN/kT A(N,T,D)ZZZQ NV E e—E/kTe—pV/kT
N E E V
pV =kTIn=EV,T,u d pV =SdT +Ndu+pdv | G=-—KTInA(N,T,p) dG=-SdT +Vdp+ pdN
ssz[a'”E] fkIn= ssz[m”A] 4KInA
oT e oT e
N — kT oln= R dln A
o ), - ON

T,p




POSTULATE @. Ensemble average corresponds to TD average.

Mean value of arbitrary mechanical property M (in a real system it would be obtained by
time averaging aver the sufficiently long period of time) is equal to the mean value
obtained for the ensemble; systems of this ensemble must reproduce TD state of real

system. (Strictly speaking it holds only for N — o)

POSTULATE @. Principle of equal a priori probabilities.

For the ensemble representing isolated TD system (microcanonicle ensemble) all the
ensemble elements are distributed with the equal probability among all quantum states

available for N, V, E.

Mechanical properties of molecules ———— >  Thermodynamical propertis
of ensemble

Partition function



GCE partition function of two-component system
a) derive the partition function
b) find the expression for TD properties

GCE partition function of ideal mono-atomic gas is

(1)
|
@,

2mmkT 302
: q:[ n? ] Y

Find the TD properties of such gas (internal energy, pressure, etc. )



