Partition function <«—— {EJ (N ,V)} From the Schrodinger eqution solution for N-particle
system

l Simplification (?)

H=>H —— E=YE — ¥Y=]]Y¥

BOSONS - no restriction for the state occupation
FERMIONSs — no particles can be in the same state

Gas (low pressure) => inter-molecular interactions neglected

Examples: Polyatomic molecules — separation of Hamiltonin




@ System of distinguishable particles

H = Z H. > {8?} Energy level j of particle a.
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Molecular partition function

For the same (distinguishble particles — allowed energy levels are the same:

Example:

=> Manybody probllem is reduced to single-particle terms

crystal
molecular partition function Omotecute = Gr Arot Gy Ue
- additional simplifications

0,0, T)=3 e

Q(N,V,T)= q(,T)"

Independent
Distinguishable



@ System of indistinguishable particles

Ej. =&+ te+&+ < {gj} Energetické hladina j ¢astice.

Q(N V T) — Z e*(5i+€j+gk+€|+m)/k.r

Summation indeces i, J, k, ... are dependent

LIk — summation cannot be broken into individual terms
Fermions: two fermions cannot be in the same (energy) state \
vy Terms with two (or
/\ mor) indeces being
o . equal are problematic!
Ejj--- satisfying Ejj--- Not satisfying q P
N! possibilities Excluded
1/NI —(gi+ej+ex+ea+-) KT
e
Bosons: no restrictions i=j=k=l=.. Cannot be simplified!
— T
Ejji--- satisfying Ejj--- Not satisfying
N! possibilities X possibilities
1/N! 1/X

] Aproximative solution




If the number of allowed states is significantly larger than the number of praticles =» small
probability that 2 (or more) particles will be at the same energy state. Neglecting such situation.

N

q(V,T) = Zesi /KT

Justification — particle in 3-D box

Q(N,V,T)= % Reduction of N-particla problem for

Indistinguishable particles

-Number of quantum states with energy <e

m=10 *g
a=10cm
T =300°K

Requirement of  @(e) >N
In mjority of cases this is true:

3, z[lkaT ]3/2 N
T2 6| h?

This holds in particular for large T, low density
and heavy particles
BOLTZMANN STATISTICS

>
Vv

3/2

7 [8ma’e
B(c) =~
(T 6| h2
&(e) ~10%

Problematic for light particles at low
temperature

Table 4.1 — pge 72



Table 4-1. The quantity (6 N/ VY (h?*/12mkT)*/2 for a number of simple systems*

6N | h: 372
TCK) oV (uka)

liquid helium 4 1.6
gaseous helium 4 0.11
gaseous helium 20 2.0 x 10-3
gaseous helium 100 3.5 x10°°
liquid neon 27 1.1 x10°2
gaseous neon 27 8.2 x10°°
gaseous neon 100 3.1 x 10-¢
liquid argon 86 5.1 x10~%
gaseous argon 86 1.6 x 10-¢
liquid krypton 127 54 x 1073
gaseous krypton 127 2.0 x 1077
electrons in metals 300 1465
(sodium)

* This quantity must be much less than unity for Eq. (4-10) to be valid. The temperatures associated with
the liquid states are the normal boiling points [¢f. Eq. (4-11)].



BOLTZMANN STATISTICS
Approximation — holds better for higher temperatures

E:sz[a'”Q]
aT |,

N

_q
Q(N,V,T)—m

q(V,T) = Zesi /KT

N

E=N) ¢, ° = Ne ¢ - Average energy of a particle

Probabilisty that the molecule is in the state
q with the energy ¢;

The same result as obtained by Boltzmann

Gibbs approach is more rigorous
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BOLTZMANN STATISTICS
Approximation — holds better for higher temperatures

T v

N — = —
Q(N,V,T) :% > E= NZsj © : = N¢ e - Average energy of a particle
- j
_ —& KT
—e. [KT
T — e Probabilisty that the molecule is in the state
. q with the energy ¢;

Fluctuation in ¢ are of the same order as ¢ — distribution of energies of individual molecules is broad.
An extremely narrow Gauss distribution of E (for large N) is a many-body effect!



Fermi-Dirac and Bose-Einstein statistics Deduction based on GCE

& ... Allowed guantum states of individual molecules E =Y en
E;(N,V) ... Available energy states of an ensemble of N molecules b LTk
n(E;) Number of molecules in state ¢, in the system characterized by E;
. N = Zn
{n.} ... describes the quantum state ok
EV,T,p =) eMTQ(N,V,T)=> A"Q(N,V,T)
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Similar relationships, just “+” is replaced by “-

Even if the inter-molecular interactions are neglected — individual particles are not independent in
quantum statistics — follows from the requirement on wave function.
Molecular partition function g is not defined.



Both Fermi-Dirac and Bose-Einstein quantum statistics become equivalent with the classical
Boltzmann statistics in the limit of high temperatures and low densities (number of allowed quantum
states is significantly larger than the number of particles).

n —0 < A—0
i i ) N
From the TD point of view this means v —0 o T—oo
h e - e
A—0: kK — K 1_|_)\e*ﬁ€k

l Summing over k and deviding both equations

e_ﬁ‘sk e_ﬁ‘sk
Ze_&k - q Boltzmann statistics
k

ne
N

Correspondence between Bose-Eisnstein and Fermi-Dirac statistics can be obtained in a
similar way

Quantum statistics is necessary only in some “extreme” cases:
electrons in metals
liquid helium




Ideal monoatomic gas

Intermolecular interactions are neglected (p <1 atm, T > 300 K).
Ideal gas — number of quantum states significantly larger than number of molecules:

N
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Electronic partition function
_ — P
qelect T Zweie

Energy of the ground state =0

—BAs,

qelect — wel +we2e

Energy levels are well separated (in the most cases; radicals and unstable species are different).
Degeneracy of the ground electronic state must be taken into consideration.

He — 15t excited state ~ 20 eV:
He (300 K) ... Population of 15t excited state ~ 10-334
He (3000 K) ... ~ 1033

Atoms with low lying electronic excited states — several states should be considered in qge

Nuclear partition function

Even larger separation of energy levels— only the degeneracy of the ground state considered.



Table 5-1. Atomic energy states

electron term degeneracy
atom configuration symbol g=2/+1 energy (cm~1) energy (eV)
H ls 281;2 2 0 0
2p 2Py;2 2 82258.907 10.20
25 2S1 /2 2 82258.942
2p 2P3,’2 4 82259.272
He 152 1So 1 0
152s 351 3 159850.318 19.82
150 1 166271.70
Li 15223‘ 281;2 2 0
1s%2p 2Pis2 2 14903.66 1.85
2P, 4 14904.00
15235 281;2 2 27206.12
O 15225%2p* o o 5 0
3P, 3 158.5 0.02
3P, 1 226.5 0.03
'D, 5 15867.7 1.97
. AT i 33792.4 4.19
F 1522522p5 2P3;2 4 0
2P 2 404.0 0.05
1522522p*3s “Ps;a 6 102406.50 12.70
“Pia 4 102681.24
P12 2 102841.20
2P3; > 4 104731.86
2P1;a 2 105057.10

Source: C. E. Moore, “Atomic Energy States,” Natl. Bur. Standards, Circ., 1, p. 467, 1949.



Partition function of ideal monoatomic gas

N
qtrans qelec qnucl
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2nmkT\>* V
S =3Nk + Nk ln[( m::z ) ;] + Nk In(w,; + w,, e~ F412)
N Nkw,, A, , e~ Foer2 (5-19)
Gelec
2nmkT\*? Ve®'?
= Nk ln[(—%) jv ] + Selec (5-20)

In Eq. (5-20), S, denotes the last two terms of Eq. (5-19). Equation (5-20) is called
the Sackur-Tetrode equation. Table 5-3 compares the results of this equation with
experimental values for several monatomic gases.

Table 5-3. Comparison of experimental entropies at 1 atm and 7= 298°K to those calculated from the
statistical thermodynamical equation for the entropy of an ideal monatomic gas*

exp. calc.

(e.u.) (e.u.)
He 30.13 30.11
Ne 34.95 34.94
Ar 36.98 36.97
Kr 39.19 39.18
Xe 40.53 40.52
C 37.76 37.76
Na 36.72 36.70
Al 39.30 39.36
Ag 41,32 41.31
Hg 41.8 41.78

* The experimental values have been corrected for any nonideal gas behavior.



