
Partition function { ( , )}jE N V From the Schrödinger eqution solution for N-particle 

system 

Simplification (?) 
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BOSONS – no restriction for the state occupation 

FERMIONs – no particles can be in the same state 

Gas (low pressure) => inter-molecular interactions neglected 

Polyatomic molecules – separation of Hamiltonin Examples: 



System of distinguishable particles 
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Molecular partition function 

For the same (distinguishble particles – allowed energy levels are the same: 

 => Manybody probllem is reduced to single-particle terms 

Example: 

 crystal 

 molecular partition function 

   - additional simplifications 
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System of indistinguishable particles 
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2. 

Summation indeces i, j, k, ... are dependent  

– summation cannot be broken into individual terms 

Fermions: two fermions cannot be in the same (energy) state 
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      1/N! 

Eijkl... Not satisfying 

Excluded 

Bosons: no restrictions 
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Eijkl... Not satisfying 
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Cannot be simplified! 

Aproximative solution 

Terms with two (or 

mor) indeces being 

equal are problematic! 



If the number of allowed states is significantly larger than the number of praticles  small 

probability that 2 (or more) particles will be at the same energy state. Neglecting such situation. 
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Indistinguishable particles Reduction of N-particla problem for 

Justification – particle in 3-D box 

-Number of quantum states with energy ≤ ε 
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In mjority of cases this is true: 
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This holds in particular for large T, low density 

and heavy particles 

      BOLTZMANN STATISTICS 

Problematic for light particles at low 

temperature 

Table 4.1 – pge 72 





BOLTZMANN STATISTICS 

Approximation  –  holds better for higher temperatures 
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with the energy εj 

The same result as obtained by Boltzmann 

Gibbs approach is more rigorous 
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BOLTZMANN STATISTICS 

Approximation  –  holds better for higher temperatures 
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Fluctuation in ε are of the same order as ε – distribution of energies of individual molecules is broad. 

An extremely narrow Gauss distribution of E (for large N) is a many-body effect! 



Fermi-Dirac and Bose-Einstein statistics Deduction based on GCE 

εj           ...  Allowed quantum states of individual molecules 

Ej(N,V) ...  Available energy states of an ensemble of N molecules 

nk(Ej)    ...  Number of molecules in state εk in the system characterized by Ej     

{nk}      … describes the quantum state 
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Similar relationships, just “+” is replaced by “˗”  

Even if the inter-molecular interactions are neglected – individual particles are not independent in 

quantum statistics – follows from the requirement on wave function. 

Molecular partition function q is not defined. 



Both Fermi-Dirac and Bose-Einstein quantum statistics become equivalent with the classical 

Boltzmann statistics in the limit of high temperatures and low densities (number of allowed quantum 

states is significantly larger than the number of particles). 
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Summing over k and deviding both equations 

Boltzmann statistics 

Correspondence between Bose-Eisnstein and Fermi-Dirac statistics can be obtained in a 

similar way 

Quantum statistics is necessary only in some “extreme” cases: 

 electrons in metals 

 liquid helium 
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Ideal monoatomic gas 

Intermolecular interactions are neglected (p < 1 atm, T > 300 K). 

Ideal gas – number of quantum states significantly larger than number of molecules: 
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Electronic partition function 
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Energy of the ground state = 0 
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Energy levels are well separated (in the most cases; radicals and unstable species are different). 

Degeneracy of the ground electronic state must be taken into consideration. 

 

He – 1st excited state ~ 20 eV: 

He (300 K) ... Population of 1st excited state ~ 10-334 

He (3000 K) …   ~ 10-33 

 

Atoms with low lying electronic excited states – several states should be considered in qelect 

Nuclear partition function 

Even larger separation of energy levels– only the degeneracy of the ground state considered. 





Partition function of ideal monoatomic gas 
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Only multiplication constant in Q 

It can influence only S and A 

It does not have to be considered in many cases 
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