

Amperometric biosensors in flow injection analysis: silver amalgam-based transducers coupled to replaceable and reusable enzymatic mini-reactors

Sofiia TVORYNSKA^{1,2}, Jiří BAREK², Bohdan JOSYPČUK¹

¹ J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 182 23 Prague 8, Czech Republic

² Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 2030/8, 128 43 Prague 2, Czech Republic

Introduction

AMPEROMETRIC ENZYME-BASED BIOSENSOR:

biorecognition part enzyme - oxidoreductase

substrate + $enzyme_{ox} \rightarrow product + enzyme_{red}$

 $enzyme_{red} + O_2 \rightarrow enzyme_{ox} + H_2O_2$

detection part

- monitoring of the enzymatically consumed O_2 via its reduction (e.g., Clark electrode)
- monitoring of the enzymatically produced H_2O_2 via its oxidation (e.g., GCE)

Literature overview

Biosensing platform in flow injection analysis - conceptualization

- biorecognition (1) enzymatic mini-reactor) and detection (2) silver amalgam-based transducer) parts are spaciously separated
- use of a silver amalgam-based transducer for amperometric monitoring of oxygen consumption by its four-electron reduction at a highly negative detection potential

Uric acid biosenso

Choline biosensor ChOx-based mini-reactor Acetylcholine biosenso ChOx-based mini-reactor AChE-based mini-reactor

Silver solid amalgam electrode covered by mercury film (MF-AgSAE)

Lactic acid biosensor
 LOx-based mini-reactor

Silver amalgam-based SPE (AgA-SPE)

Biosensing platform in flow injection analysis - conceptualization

- biorecognition (1) enzymatic mini-reactor) and detection (2) silver amalgam-based transducer) parts are spaciously separated
- use of a silver amalgam-based transducer for amperometric monitoring of oxygen consumption by its four-electron reduction at a highly negative detection potential

Detection part:

```
Electrochemical reaction
 at silver solid amalgam transducer
 (TD-AgSA/MF-AgSAE/AgA-SPE):
0_2 + 2H_20 + 4e^- \xrightarrow{-0.9 \text{ V}_{\dots} - 1.4 \text{ V}} 40\text{H}^-
```

Biorecognition part

Enzymatic reaction in **oxidoreductase enzyme**-based mini-reactor:

```
substrate + enzymeox \rightarrow product + enzymered
      enzyme_{red} + O_2 \rightarrow enzyme_{ox} + H_2O_2
```

Acetylcholinesterase-based mini-reactor:

acetylcholine + $H_2 O \longrightarrow$ acetic acid + choline

Uricase-based mini-reactor: uric acid + O_2 + $H_2O \xrightarrow{UOx}$ allantoin + CO_2 + H_2O_2

Lactic acid oxidase-based mini-reactor: lactic acid + O_2 + $H_2O \xrightarrow{LOx} pyruvic acid + <math>H_2O_2$

Choline oxidase-based mini-reactor: choline + $2O_2$ + $H_2O \xrightarrow{\text{ChOx}}$ betaine + $2H_2O_2$

Biosensing platform in flow injection analysis - conceptualization

Importance of determination

Silver solid amalgam electrodes were introduced in 2000 by Yosypchuk and Novotný

Advantages of the AgSAEs:

- a wide potential window
 (-2.07 ... -0.06 V in 0.1 M NaOH at MF-AgSAE)
- mechanically stable and suitable for flow systems
- simple, low-cost preparation and easy miniaturization
- easy renewability of their surface (electrochemically / polishing)
- environmentally friendly

- a crystalline structure Ag₂Hg₃
- no other phases
- no pores
- no liquid mercury

SEM image of the surface of AgSAE

Oxygen reduction at liquid mercury electrodes and amalgam electrodes (neutral or alkaline medium):

I. $O_2 + 2H_2O + 2e^- \rightarrow H_2O_2 + 2OH^-$ (−100 mV vs. SCE) II. $H_2O_2 + 2e^- \rightarrow 2OH^-$ (−900 mV vs. SCE)

 $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

(1) Tubular detector of silver solid amalgam (TD-AgSA)

- simple, robust, inexpensive construction
- providing repeatable measurements
- lower sensitivity (compared to MF-AgSAE)

The laboratory-made 3-electrode flow-through cell

- simple design
- □ air bubbles easily go through the TD-AgSA with the flow of the CS
- use as a transducer for the UA biosensor

(2) Silver solid amalgam electrode covered by mercury film (MF-AgSAE)

- simple, robust, inexpensive construction
- providing repeatable measurements
- better sensitivity (compared to TD-AgSA)

The laboratory-made 3-electrode wall-jet cell

- $\hfill\square$ the inlet PTFE capillary was cut off at the optimized angle of **30** $^\circ$
- $\hfill \Box$ more challenging to get rid of the air bubbles

use as a transducer for the Ch biosensor as well as the ACh biosensor

(3) Silver amalgam-based screen-printed electrode (AgA-SPE)

Preparation:

 fully automated and computer-controlled electrochemical deposition of mercury ions on the commercially available Ag-SPE (ø 1.6 mm, m(Ag) = 56.3 μg)

(i) cathode: Ag-SPE
(ii) anode: silver paste amalgam (12 % (w/w) Ag)
(iii) electrolyte: [0.05 mol L⁻¹ HgO, 2 mol L⁻¹ KI]
(iv) E_{dep} = - 200 mV

Determination of the hydrogen evolution potential at AgA-SPE:

Electrochemical characterization (using $[Ru(NH_3)_6]^{3+/2+}$):

Electrode	$\Delta E_p / mV$	Ip ^c /Ip ^a	A _{geom} / mm²	A _{eff} / mm²		
AgA-SPE	63.3 ± 0.2	0.97 ± 0.01	2.0	1.61 ± 0.01		
Ag-SPE	63.9 ± 0.6	0.90 ± 0.02	2.0	1.68 ± 0.04		

fast electron transfer kinetics

(3) Silver amalgam-based screen-printed electrode (AgA-SPE)

- use as a transducer for the LA biosensor
 - FIA ($v_{flow} = 0.2 \text{ mL min}^{-1}$, $V_{LA} = 60 \mu L$)
 - the commercially available wall-jet cell
 - *biorecognition part:* **LOx**-based mini-reactor
 - amperometric monitoring of oxygen consumption (E_{det} = -1.1 V vs. Ag pseudo-RE)
 - supporting electrolyte: 0.1 M PB, 1.0 mM Na₂EDTA, pH 7.5

Biorecognition part: enzymatic mini-reactor

Immobilization method:

Support:

Coupling agent:

technique A -NH₂ + OHC - (CH₂)₃- CHO Glutaraldehyde $\mathbf{H} - (\mathbf{CH}_2)_4 - \mathbf{CHO}$ $E - NH_2$ $\mathbf{NH} - (\mathbf{CH}_2)_5 - \mathbf{NH} - \mathbf{E}$

Covalent attachment

Mesoporous silica powders

MCM-41 (surface area $\approx 1000 \text{ m}^2\text{g}^{-1}$, pore size $\approx 2.1 - 2.7 \text{ nm}$) SBA-15 (surface area $\approx 600 \text{ m}^2\text{g}^{-1}$, particle size 2 - 6 µm, pore size $\approx 7 \text{ nm}$)

Glutaraldehyde (technique A) **vs. EDC/NHS** (techniques **B** and **C**)

Formation of the -NH₂ or -COOH groups on the surface of the mesoporous silica powders (SBA-15, MCM-41)

Silanization technique

- amount of -NH₂ groups introduced to the surface of 1 g SBA-15 is 2.0 times higher than -COOH groups
- **GA**-activated support is stable for 24 h, while **EDC/NHS** is stable for around 30 min
- GA is a 5-atom spacer arm, contrary to zero-length EDC/NHS

Biorecognition part: enzymatic mini-reactor

Determination of the immobilized enzyme quantity (Bradford method)

Biorecognition part: enzymatic mini-reactor

Quantity of the immobilized enzyme:

- UOx-based mini-reactor: c.a. 955 μg (8.6 U) of the UOx
- ChOx-based mini-reactor: c.a. 477 μg (6.6 U) of the ChOx
- LOx-based mini-reactor: c.a. 270 μg (12 U) of the LOx

	vs.		
Biosensors o	f classic	pen-type	design

WE (ø)	Immobilization technique	Enzyme (activity)	Immobilized amount	Ref.	
Pt (3 mm)	Avidin-biotin technique	ChOx (10 U/mg)	0.038 μg (0.4 mU)	[1]	
Pt (3 mm)	Encapsulation	ChOx (10 U/mg)	5.6 μg (0.06 U)	[2]	
GCE (3 mm)	Physical adsorption	ChOx (10 U/mg)	60.9 μg (0.7 U)	[3]	
GCE (3 mm)	Physical adsorption	ChOx (11 U/mg)	9.26 µg (0.1 U)	[3]	
GCE (3 mm)	Entrapment	HRP (318 U/mg)	0.61 μg (0.19 U)	[4]	
GCE (3 mm)	Encapsulation	Lac (0.5 U/mg)	38.9 μg (0.019 U)	[5]	
GCE (2 mm)	Covalent binding	GOx	2.57 μg	[6]	

[1] Chen et al., Electroanalysis 1998, 10 (2), 94-97.

[2] Shimomura et al., Talanta 2008, 78, 217-220.

[3] Sajjadi et al., Electrochim. Acta 2011, 56, 9542-9548.

[4] Jiang et al., J Solid State Electrochem. 2009, 13, 791-798.[5] Shimomura et al., Sens. Actuators B: Chem. 2011, 153, 361-368.

[6] Abasiyanik et al., J Electroanal. Chem. 2010, 639, 21-26.

Optimization of the responses of the biosensors

3-

2-

1-

0+ 0

-400

Optimization of the responses of the biosensors 1							
Biosensor	Analyte	pH and composition of the carrier solution (CS)	E_{det} / mV	v_{flow} / mL min⁻¹	V _{inj} / μL		
TD-AgSA + UOx-based mini-reactor	uric acid (UA)	[0.1 M BB, pH 9.1]	-1100*	0.1	60		
MF-AgSAE + ChOx-based mini-reactor	choline (Ch)	[0.1 M PB, pH 7.2, 1.0 mM Na ₂ EDTA]	-1400*	0.2	60		
MF-AgSAE + AChE-based mini-reactor + ChOx-based mini-reactor	acetylcholine (ACh)	[0.1 M PB, pH 8.0, 1.0 mM Na ₂ EDTA]	-1400*	0.2	120		
AgA-SPE + LOx-based mini-reactor	lactic acid (LA)	[0.1 M PB, pH 7.5, 1.0 mM Na ₂ EDTA]	-900**	0.2	60		
	Ch biosensor A - MF-AgSAE - TD-p-AgSA - TD-p-AgSA - UA biosensor C UA biosensor		*vs. SCE-	AgA; **vs. Ag p	iseudo-RE		

1.2-

0.8-

0.4-

0.0

–<mark>∎</mark>– TD-p-AgSA

-800 -1200 -1600 *E_{det} vs.* SCE-AgA / mV

–**∎**– AgA-SPE

-1200

-1600

-800

*E*_{det} *vs.* Ag pseudo-RE / mV

-400

Analytical performances

Biosensor	Analyte	LDR / μmol L ⁻¹	LOD / μmol L ⁻¹	Repeatability (RSD _{n=11}) / %	Reusability
TD-AgSA + UOx-based mini-reactor	uric acid (UA)	50 - 800	18.5	2.8	90.5 % / 365 days / <mark>600 uses</mark>
MF-AgSAE + ChOx-based mini-reactor	choline (Ch)	40 - 500	13.0	2.4	83.0 % / 100 days / <mark>500 uses</mark>
MF-AgSAE + AChE-based mini-reactor + ChOx-based mini-reactor	Acetylcholine (ACh)	30 - 400	13.6	2.3	89.8 % / 100 days / 400 uses
AgA-SPE + LOx-based mini-reactor	lactic acid (LA)	40 - 500	12.0	1.8	93.8 % / 95 days / <mark>350 uses</mark>

Calibration curve

Repeatability

Selectivity

No interference caused changes in biosensor signals of more than 5.0%

Practical application

Biosensor	Analyte	Sample	S		Found		Declar	red
TD-AgSA + UOx-based mini-reactor uric acid (UA		Human urine			2.98 ± 0.04 mM		>4.4 mM	
MF-AgSAE + ChOx-based mini-reactor	choline (Ch)	Pharmaceutical: Otic solution [®] Pharmaceutical: Lipovitan [®] DUO		0.143 ± 0.0023 g 0.254 ± 0.0087 g		0.140 g 0.255 g		
MF-AgSAE + AChE-based mini-reactor + ChOx-based mini-reactor	acetylcholine (ACh)	Human plasma (spiked)		102.3 μM		100.0 μM		
AgA-SPE + LOx-based mini-reactor	lactic acid (LA)	Human saliva Red wine Yogurt Kefir		87.4 ± 2.4 μ M 1.36 ± 0.031 g L ⁻¹ 0.78 ± 0.007 (<i>w</i> / <i>w</i>) 1.27 ± 0.028 (<i>w</i> / <i>w</i>)		> 200 μM > 3.0 g L ⁻¹ ~ 0.9 (<i>w/w</i>) 0.9 - 1.1 (<i>w/w</i>)		
Standard addition method			ecovery test					
UA biosensor urine LA biosensor			Analyte	Added / mM	Expected / mM	Found	/ mM	Recovery
			uric acid (UA)	- 0.1 0.2	2.99 3.00	2.98 ± 3.08 ± 3.17 ±	0.03	- 103.0 105.6
-12 - (1) <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	(1) Y 1.6 Y 1.2 Q 1.2	<u>+</u>	Analyte	Added / µM	Expected / µM	Found	/μΜ	Recovery
$-10 - \frac{(3)}{(4)} - \frac{2}{200 - 100} - \frac{2}{10} - \frac{2}{200 - 100} - \frac{2}{200 - 300} - 2.8 - \frac{2}{0} - 2.4 - \frac{2}{0} - 2.4 - \frac{2}{0} - 2.4 - \frac{2}{0} - \frac{2}{$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \\ 0.4 \\ 3 \\ -150 \\ 0 \\ 150 \\ c_{SA} / \mu mol L^{-1} \end{array}$		- 50.0 100.0 150.0 200.0	137.4 187.4 237.4 287.4	87.4 ± 132.5 190.4 233.0 297.5	± 3.9 ± 7.9 ± 8.5	- 96.7 101.6 98.3 103.5

- the proposed platform, based on the preparation of the spatially segregated biorecognition part coupled with a principle of detecting oxygen consumption, solves the common biosensors' limitations related to rapid enzyme deactivation and low selectivity of detection
- □ four biosensors have been successfully constructed
- it could be a promising new pathway for the development of electrochemical biosensors with other oxidoreductase enzymes
- the working electrodes based on AgSAs constructed in our laboratory can be successfully used for the monitoring of the reduction process in FIA

Acknowledgements

- the Grant Agency of Charles University in Prague (Project 1356120)
- the Grant Agency of the Czech Republic (Projects 20-01589S, 20-07350S)
- Specific Charles University Research (SVV 260560, 260690)

THANK YOU FOR YOUR ATTENTION!