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Spatial variability of soil parameters in an analysis of a strip footing using
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ABSTRACT: Advanced hypoplastic constitutive model is used in probabilistic analyses of a typical geotech-
nical problem, strip footing. Spatial variability of soil parameters, rather than state variables, is studied by
means of random field Monte-Carlo simulations. The model, including correlation length, was calibrated using
a comprehensive set of experimental data. Foundation displacement u,, for given load follows closely lognormal
distribution, even though some model parameters are distributed normally. The vertical correlation length 6, was
found to have minor effect on ju[u, ], but significant effect on o[u,], which decreases with decreasing 6, due to

spatial averaging. Applicability of a simpler probabilistic method (FOSM) is also discussed.

1 INTRODUCTION

Geomechanical properties measured in site investi-
gation programs are highly variable. The causes for
the parameter variability can be broadly divided into
two groups (Helton 1997). Objective (aleatory) uncer-
tainty results from inherent spatial variability of soil
properties, whereas subjective (epistemic) uncertainty
is caused by the lack of knowledge and measurement
error. Both sources of uncertainty need to be consid-
ered in geotechnical design (Schweiger and Peschl
2005). In this work, we focus on the description
of the aleatory uncertainty, which is inherent to the
given soil deposit and cannot be reduced by additional
experiments or improvement of experimental devices.

Advanced constitutive models for soils distinguish
between material parameters and state variables. In
principle, soil parameters are specific to the given
mineralogical properties of soil particles and soil gran-
ulometry. State variables (such as void ratio e) then
allow us to predict the dependency of the soil behaviour
on its state. In this respect, the sources of aleatory
uncertainty can further be subdivided into two groups:

1. In some situations, soil mineralogy and granulom-
etry may be regarded as spatially invariable, and
the uncertainty in the mechanical properties of
soil deposit come from variability in soil state.
In this case, soil parameters may be considered
as constants, and it is sufficient to consider spa-
tial variability of state variables describing relative
density of soil.

2. In other cases, soil properties are variable due
to varying granulometry and mineralogy of soil
grains. Such a situation is for example typical
for soil deposits of sedimentary basins, where the
granulometry varies due to the variable geological
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conditions during the deposition. In such a case,
it is necessary to consider spatially variable soil
parameters.

Most of the applications of probabilistic methods in
combination with advanced soil constitutive models
consider uncertainty in the state variable only. As an
example, Hicks and Onisiphorou (2005) studied sta-
bility of underwater sandfill berms. Their aim was
to study whether presence of ‘pockets’ of liquifi-
able material may be enough to cause instability in
a predominantly dilative fill. They used a double-
hardening constitutive model with probabilistic dis-
tribution of state variable . In other applications,
Tejchman (2006) studied the influence of the fluctua-
tion of void ratio on formation of the shear zone in the
biaxial specimen using the hypoplastic model by von
Wolffersdorft (1996).

The aim of the research project presented is a com-
plete evaluation of the influence of parameter variabil-
ity of an advanced constitutive model on predictions of
typical geotechnical problems. Suchomel and Masin
(2009) performed a set of laboratory experiments on
sandy material, that were used for evaluation of prob-
abilistic distributions and spatial variability of param-
eters of a hypoplastic model for granular materials by
von Wolffersdorft (1996). The influence of their vari-
ation on predictions of a typical geotechnical problem
(strip footing) is presented in this contribution.

2 EXPERIMENTAL PROGRAM AND
CALIBRATION OF A CONSTITUTIVE
MODEL

For details of the experimental program and calibra-
tion of the models see Suchomel and Masin (2009).
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Figure 1. The wall of the sand pit in south part of the Trebon

basin. Black dots represent positions of specimens for the
laboratory investigation.

The material for investigation comes from the south
part of upper Cretaceous Trebon basin in the South
Bohemia from the sand pit “Kolny”. The pit is located
in the upper part of the so-called Klikovské layers,
youngest (senon) strata of the South Bohemian basins.
These fluvial layers are characterised by a rhythmical
variation of gravely sands, sands and sands with dark
grey clay inclusions.

Altogether forty samples were taken from a ten
meters high pit wall in a regular grid (Fig. 1). The labo-
ratory program was selected to provide for each of the
samples enough information to calibrate a hypoplas-
tic model for granular materials by von Wolffersdorff
(1996). The following tests were performed on each of
the 40 samples:

e Oedometric compression test on initially very loose
specimens.

e Drained triaxial compression test on specimen
dynamically compacted to void ratio correspond-
ing to the dense in-situ conditions. One test per
specimen at the cell pressure of 200 kPa.

e Measurement of the angle of repose.

The hypoplastic model by von Wolffersdorft (1996)
has eight material parameters. The model was cali-
brated using procedures outlined by Herle and Gude-
hus (1999). The whole process of calibration was
automated to reduce subjectivity of calibration. Exam-
ples of the measured and simulated results of triaxial
experiments are shown in Figure 2 (specimens from
one column of the sampling grid).

Suitability of different statistical distributions (nor-
mal and lognormal) to represent the experimental data
was evaluated using Kolmogorov-Smirnov tests. Char-
acteristic values of statistical distributions of parame-
ters of the hypoplastic model are given in Tab. 1 (note
the results differ slightly from Suchomel and Masin
(2009), as two specimens ¢l and e4 with unusual
behaviour were not considered in the present evalu-
ation). Statistical distributions of parameters 4, and
are in Figure 3, as an example.

As position of each of the 40 samples was known,
Suchomel and Masin (2009) could also evaluate the
correlation length in the horizontal (6;) and verti-
cal (6,) directions. The dependency of the correlation

1200
1000 | /

5 T 800 |
) e = 600
= - = 400 -:_.f'/ /
experiment 200 Fi"'r hypoplasticity |
. . | o . . |
V] 0.1 0.2 0.3 4] 0.1 0.2 0.3
£5 1] 5[]

g, [1]

Figure 2. Typical experimental and simulated results of
drained triaxial tests.

Table 1. Characteristic values of statistical distributions of
parameters of the hypoplastic model.
param. dist. mean st. dev.
e log. 35.1° 1.62°
hy log. 3.82 GPa 14.6 GPa
n log. 0.289 0.095
e norm. 0.847 0.111
e norm. 1.016 0.133
eq norm. 0.318 0.042
o log. 0.074 0.048
B norm. 1.261 0.605
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Figure 3. Examples statistical distributions of hypoplastic

parameters (/; and B).

coefficient p on distance was approximated using an
exponential expression due to Markov

—exp |2/ (2 Tv
f = exp Z\II, (9{?') + (Qr) (1)

where 7, is the horizontal distance between two spec-
imens and T, is the vertical distance. The correlation
length could successfully be evaluated using parame-
ter ¢, only. This parameters depends directly on soil
granulometry. The least square fit of Eq. (1) through
the experimental data is shown in Figure 4, leading
to 6, =242 m and 6, = 5.1 m. Note that practically no
correlation is observed in the vertical direction, there-
fore the obtained value 6, =5.1m is implied by the
adopted vertical sampling distance, rather than by the
actual autocorrelation properties. Additional experi-
ments on specimens obtained from the outcrop in a
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Figure 4. Evaluation of the correlation coefficient p in hori-

zontal (a) and vertical (b) directions for parameter ¢, together
with least square fit of Eq. (1).
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Figure 5. The problem geometry and finite element mesh.

smaller vertical sampling distance are currently being
performed to evaluate 6, more precisely.

In addition to the laboratory experiments, five in
situ porosity tests with membrane porosimeter were
performed at different locations within the area from
which the samples were obtained. Average natural void
ratio was 0.41. The sand was thus in a dense state.

3 STRIP FOOTING PROBLEM

The influence of spatial variation of parameters of the
hypoplastic model was studied by simulations of a
typical geotechnical problem — settlement of a strip
footing. Simulations were performed using a finite
element package Tochnog Professional. The prob-
lem geometry and finite element mesh are shown in
Figure 5. The mesh consist of 1920 nine-noded quadri-
lateral elements. The foundation was analysed as rigid
and perfectly smooth. Element size in the vicinity of
the footing is 0.5 m.

The soil unit weight is 18.7kN/m>®. The ini-
tial Ky=0.43 was calculated from Jaky formula
Ky=1— sin ¢., with average value of ¢, measured
in the experiments. The initial value of void ratio
e=0.48 was used in simulations. The soil was thus
slightly looser then in situ, in order to ensure that the
void ratios do not surpass the physical lower bound
e, during Monte-Carlo simulations. Spatial variabil-
ity of void ratio was not considered. The analyses thus
focused on qualitative evaluation of the influence of
the spatial variability of soil parameters. In all cases,
foundation displacements corresponding to the load of
500 kPa were evaluated. Bearing capacity of the foun-
dation was not evaluated, as the peak loads depend on
the mesh density due to the localisation phenomena.
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Figure 6. Tornado diagram showing sensitivity of founda-
tion displacements on different parameters.

4 SENSITIVITY ANALYSIS

At first, sensitivity of the results on different material
parameters was evaluated. In these simulations, spa-
tial variability of soil parameters was not considered.
Only one parameter was varied at a time, all other
parameters were given their mean or median values
(for normally and lognormally distributed parameters
respectively).

A Tornado diagram showing sensitivity of founda-
tion displacements u, on different parameters is given
in Figure 6. It shows u,, for the mean value p.[X ] and for
w[X] £ o[X], where X is parameter value in the case
of normally distributed parameters and its logarithm
in the case of lognormally distributed parameters.

As expected, foundation settlements are influenced
the most significantly by the parameters controlling
soil bulk modulus (parameters 4, and n) and parameter
B that influences the shear stiffness. Less signifi-
cant is the influence of the relative density, controlled
through parameters ey, e;o and ezo. Note that e
and the other two reference void ratios e;y and ey
were varied simultaneously to ensure constant ratios
between them imposed during calibration (Suchomel
and Masin 2009). The smallest influence on foun-
dation settlements have parameters « and ¢., which
control soil strength.

5 PROBABILISTIC ANALYSES

The following probabilistic analyses of the strip foot-
ing were performed. First of all, the problem was
simulated without considering spatial variability of the
parameters (i.e. the correlation length was infinite).
In the second step, spatial variability of the param-
eters was introduced through simulations based on
random field theory by Vanmarcke (1983) (RFEM).
Last, applicability of a simpler probabilistic method
based on Taylor series expansion (first order second
moment method, FOSM) was studied.
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Figure 7. The dependency of u[u, ] and o[u, ] on the number
of Monte-Carlo realisations.

5.1 Simulations with infinite correlation length

If spatial variability of the soil parameters is neglected,
the problem can be simulated using approximate ana-
lytical methods (for example, FOSM method). These
methods have, however, a number of limitations, as
discussed in Sec. 5.3. The probabilistic aspects of
the problem analysed in this contribution are fairly
complex. The constitutive model and thus also the
dependency of u, on X are non-linear. Some of
the model parameters follow Gaussian distribution,
whereas other follow lognormal distribution. For this
reason, analyses with spatially invariable fields of
input variables were performed using Monte-Carlo
method.

This method is fully general, but depending on the
problem solved it may require significantly large num-
ber of realisations and consequently a considerable
computational effort. Figure 7 shows the dependency
of the mean value p[u,] and standard deviation o[u, ]
for random field simulations from Sec. 5.2. At least
700 Monte-Carlo realisations is required to get a rea-
sonably stable estimate of u[u,] and o[u,]. In all
presented simulations, at least 1000 realisations were
performed.

Four analyses were performed. In three of them,
only one parameters was varied at a time and the other
parameters were given their mean (normal parameters)
or median (lognormal parameters) values. These anal-
yses were performed for the parameters 4, n and B.
B follows normal, whereas &, and n follow lognormal
distribution. In the last analysis, all paremeters were
considered as random. All parameters were simulated
as uncorrelated, with the exception of e, e40 and e;y,
which were perfectly correlated to preserve constant
ratios between them. Figure 8 shows probabilistic dis-
tributions of u, and Tab. 2 gives the values of [u,] and
o[u,]. The distribution of the output variable is well
described by the lognormal distribution, even in the
case of 8 as single variable parameter, which itself fol-
lows the Gaussian distribution. Slight deviation from
the log-normal distribution shows the analysis with n
and all parameters random.
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Figure 8. Probabilistic distributions of u, for Monte-Carlo

analyses with infinite correlation length.

Table 2. Results of probabilistic simulations with infinite
correlation length (in meters).

RFEM FOSM
random
param. plw]  olw]  plw]  olw)]
h 0.231 0.128 0.193 0.107
n 0.197 0.083 0.193 0.089
B 0.217 0.087 0.193 0.077
all param. 0.229 0.163 0.193 0.164
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Figure 9. Typical random field simulations with 6, =5.1 m
(bottom part of the mesh not shown).

5.2 Random field simulations

Spatial variability of soil parameters was considered
in the second set of analyses. Random fields were
generated using method based on the Cholesky decom-
position of the correlation matrix. Due to uncertainty
in the correlation length in the vertical direction (dis-
cussed in Sec. 2), simulations were run with different
values of 6,. All parameters were considered as ran-
dom, e, eqo and e;y were perfectly correlated and
other parameters were uncorrelated.

Example random fields (parameters 4, and §) for
6, =5.1 m are shown in Figure 9. The same figure
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Figure 10. Probabilistic distributions of u,, in random field
analyses with finite 6, and all parameters treated as random.
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Figure 11. The dependency of u[u,] and o[u,] on 0,
predicted by the random field method.

shows also corresponding distribution of void ratio
after 0.8 m of the foundation displacement. Study of
this example, as was well as other simulations not pre-
sented here, reveals that the lowest void ratios occur in
softer areas characterised by low values of the param-
eter 8. Parameter A;, which also have a substantial
influence on u, (Sec. 4), affects due to its highly
skewed lognormal distribution (Fig. 3) the results in
a global way, whereas the parameter B controls the
local deformation pattern.

Typical statistical distributions of the output vari-
able u,, are shown in Figure 10. In all studied cases, u,
follows lognormal distribution. This agrees with the
results of RFEM simulations with spatially invariable
parameters (Sec. 5.1).

Figure 11 and Tab. 3 show pu[u,] and o[u,] pre-
dicted by the RFEM simulations with different values
of ,. There is only slight change (decrease) of 1t[u,]
with 6,, whereas o[u,] decreases with decreasing 6,
substantially. This decrease is caused by the spatial
averaging of soil properties, leading to the reduction of
variance of the input variables and consequently of the
performance function (see Sec. 5.3 for more details).

5.3  FOSM simulations

One of the popular approximate analytical methods
for probabilistic analyses is the first-order, second-
moment (FOSM) method. Unlike the Monte-Carlo
method, the FOSM method has a number of limi-
tations. First, it consideres linear dependency of the
performance function (in our case u,) on the input
variables (in our case, material parameters X). Also, it

Table 3. Results of probabilistic simulations with variable
vertical correlation length (in meters).
RFEM FOSM

0, wluy] olu,] y eff. vert. dist.
Im 0.215 0.039 0.48 1.33

2m 0.219 0.059 0.61 1.78

5.1m 0.226 0.089 0.75 2.53

12.3m 0.225 0.119 0.87 3.04

does not provide any information on the skewness of
the probabilistic distribution of the output variable. Its
applicability to solve the highly complex probabilis-
tic problem from this work is studied in this section.
Details of the method may be found elsewhere, see
e.g. Suchomel and Masin (2010). Parameter values
(normally distributed parameters) or their logarithms
(lognormal parameters) are used as an input into the
FOSM method.

Tab. 2 gives the values of j[u,] and o[u,] by the
FOSM and RFEM methods for infinite correlation
length. The FOSM method underestimates both 4[]
and o[u, ] due to the non-linear dependency of the out-
put variable u, on the parameters 4, and 8 (see Fig. 6).
The method does not provide any information on the
skewness of the statistical distribution of u,. Therefore,
its use requires a check of the distribution of u, through
Monte-Carlo simulation (or other general probabilis-
tic method). In our case, the distribution of u,, is clearly
lognormal (Figs. 8 and 10).

As discussed by Suchomel and Masin (2010), the
FOSM method can indirectly consider spatial vari-
ability of the input variables through reduction of
their variances due to spatial averaging. The reduc-
tion factor y is defined as y = (o[X;]4/0[X;])?, where
o[X;] describes the global statistics of the variable X;
and o[X;], is the standard deviation of the spatially
averaged field. It may be calculated by integration
of the Markov function (Eq. (1)) (Vanmarcke 1983).
Suchomel and Masin (2010) have shown that in the
case of a slope stability problem in spatially variable
c-¢ soil, y can be estimated a priori by integrating
the Markov function in 1D along the potential failure
surface.

The value of y may be evaluated by comparing
standard deviations of the FOSM and RFEM out-
puts (Tab. 3). As y is a variance reduction factor of
the input parameters, however, a linear dependency
of the ouput variable on the input parameters (or its
logarithms) must be assumed. The results are thus
only approximate. As expected, y decreases with 6,.
Tab. 3 gives also an effective vertical distance below
the foundation that leads to the given y, found by
2D rectangular integration of the Markov function.
This distance depends on 6, and it thus cannot be
easily estimated a priori. This limits applicability of
the FOSM method for estimation of o[u, ] in the case
of spatially variable parameters with finite correlation
length.
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6 CONCLUDING REMARKS

Advanced hypoplastic constitutive model was used
in probabilistic analyses of a typical geotechnical
problem, strip footing. In the analyses, spatial vari-
ability of soil parameters, rather than state variables,
was emphasized. It was shown that the result are influ-
enced the most by the soil parameters 4, n and 8. The
output variable u, was found to follow closely log-
normal distribution, even in the case when normally
distributed parameters (such as ) were varied. The
vertical correlation length 6, was found to have minor
effect on p[u,], but significant effect on o[u,], which
decreases with decreasing 6, due to spatial averag-
ing. Even though the problem is highly complex and
non-linear, the FOSM method was found to provide
satisfactory predictions for infinite correlation length.
For finite correlation length, however, the variance
reduction factor y cannot be easily estimated a priori.
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