Modelling of the Lodalen slide using probabilistic numerigsthods
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ABSTRACT: A particular landslide in the fine-grained soil, Léeta slide, has been simulated using finite
element method combined with random field theory and Montéo@agethod. Parametersaandp of the Mohr-
Coulomb model have been considered as uncorrelated rand@blea. The calculated probability of failure is
influenced by the correlation lengtha parameter difficult to evaluate from geotechnical skestigation data.

Not considering the spatial variability of soil propertigsuld lead to unconservative design. In the presented
case a simpler probabilistic method with infinitend variance reduced due to spatial averaging along the slip
surface may be used succesfully, this result however dadsave a general validity.
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1 INTRODUCTION

The soil mechanical properties obtained from detailed
geotechnical site investigations show a marked dis-
persion, coming from their inherent spatial variabil-
ity (even in zones which are often regarded as "ho-
mogeneous” from the deterministic point of view) Figure 1. Characterisation of inherent soil variabilityftéa
and measurement error. Additional uncertainty is in-Phoon and Kulhawy 1999, modified).
troduced by the fact that only limitted number of
measurements is often available, and from subjecdsing some suitable statistical distribution, and spa-
tive calibration of simple constitutive models, which tial variability is measured by means of the correla-
are often used in geotechnical analyses. These ution lengthd, which describes the distance over which
certainties are in geotechnical engineering commonlyhe spatially random values will tend to be signif-
treated using deterministic concept of factors, whichcantly correlated (Vanmarcke 1983). Evaluation of
however discourage clearer understanding of the relahe last quantityd, is in geotechnical engineering par-
tive importance of the various factors involved (Singhticularly difficult, as it requires vast amount of data,
and Chung 1991; Phoon and Kulhawy 1999). In thiswhich are usually not available. Moreovérjn hor-
respect, probabilistic approaches are well suited tazontal direction §,,) is larger than the verticab()
geotechnical engineering. Their rather limitted use inn the case of horizontally stratified soil deposits. De-
practical applications is caused by the lack of datdailed literature reviews on the values of correlation
needed for detailed statistical evaluation of mechanlengths present Phoon and Kulhawy (1999) and EI-
ical properties. Ramly et al. (2003). It is observed thatvary within
Considering for the moment the inherent spatialthe range 10-40 m, whilé, ranges from 0.5 to 3 m.
variability only, it can be decomposed into smoothly The aim of this paper is to investigate implications
varying trend functiont(z) and a fluctuating compo- of uncertainty in the correlation length values on the
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nentw(z) as follows: probability of failure of a slope computed by means
of a deterministic numerical method combined with
£(z) = t(2) +w(z) (1) random field theory. A well-documented case history,

namely slide in Lodalen, Norway (Sevaldson 1956),

in which ¢ is the in situ soil property and is the is used for the purpose of this evaluation.

depth (Phoon and Kulhawy 1999), see Fig. 1. A ra-
tional means of quantifying inherent variability is to 2 PROBABILISTIC NUMERICAL METHODS

modelw(z) as a homogeneous random field, in whichIn probabilistic numerical analyses we usually need
deviation of¢(z) from the trend value is characterised to evaluate statistical distribution of a performance



function, based on known statistical characteristics oMarkov:
input variables. In the following, we will distinguish — ex —27 @3)
two classes of probabilistic methods. Methods of the p P

0
first class ignore the random spatial structure of 'np%vherer is absolute distance between two points in a

variables, in other words they assume infinite correla- - ) i
tion lengthd. Methods of the second class are base apdom field. Eq. 3 may be readily modified fr#

on random field theories and consider spatial variabil-*-

ity of input variables. Obviously, the first class models .\ 2 7 2
are special cases of the second class models for infi- p=exp| =2\ /| =) g (4)
nite 6. x y

A number of methods of the first class have beeRyherer, andr, are distances between two points in
used in geotechnical applications. In this class, aphorizontal and vertical directions respectively. Ran-
proximate analytical solutions, such as the First ordefiom fields of input variables may be generated us-
second moment method as a special example of Tayng one of a number of methods available (see Fenton
lor's series method (Duncan 2000) or point estimatg1994) for an overview). In the present contribution, a
methods (Christian and Baecher 1999), are availabl&jmple method based on Cholesky decomposition of
These methods are popular as they require low nume correlation matrix (e.g., Fenton (1997)) is used.
ber of computer runs. They, however, always con-This method is prone to numerical round-off errors
sider a number of simplifying assumptions, so carewhen the number of points in the field becomes large,
full analysis is needed to show wheather these ast js however sufficient for the present application.
sumptions are justifiable. An alternative to the analyt- \when the random field models are used in con-
ical methods is the Monte Carlo simulation (or othertinuum numerical methods with finite size of mate-
advanced probability procedures, such as Latin Hyria] domains, the point statistics of random input vari-
percube sampling), which are fully general, but de-aples must be transformed through local spatial aver-
pending on the problem solved they may require aging about the domain size. In the case of normally
significantly large number of realisations and conseqjstributed random variables, the mean remains unaf-

quently a considerable computational effort. Havingfected, the standard deviation is reduced by:
the performance functiol’ = g(X;, Xs,...X,,) of n

independent random variablés, the difference: of o[ X/] 2
the true mean value df and mean value estimated = ( XA>
using the Monte Carlo approach may be for normally ol Xi]
distributedY” found from the Chebychev inequality:

(®)

whereo|X;] describes the point statistics of the vari-
able X; ando[X,] , is the standard deviation of the
o[Y] spatially averaged field. The variance reduction factor
Ple< N el (2) ~ is calculated by integration of the Markov function
m(l —a) (Eq. 4), see Vanmarcke (1983).

Some authors (Christian et al. 1994, Schweiger
whereo[Y] is the standard deviation of the perfor- and Peschl 2005) advocate to use the idea of vari-
mance functionyn is a number of realisations and  ance reduction due to spatial averaging also in com-
is a prescribed probability of accuracy of the estimatebination with the first class models (models with ho-

Disadvantage of the first class methods is that theynogeneous fields of random variables), in a way in
ignore the spatial variability of soil properties. As Which the standard deviation of the homogeneous
demonstrated by many authors (Popescu et al. 199field of random variables is reduced by Eg. (5) due
Haldar and Babu 2007, Hicks and Onisiphorou 2005{0 spatial averaging along the potential failure sur-
Griffiths and Fenton 2004), the spatial variability (andface. This method will be in this paper denoted as
consequent concentration of less competent materiagxtended first class method. Note that within the ex-
into distinct zones), may lead to a significant increasdended first class method it is difficult to handle rig-
of the probability of unsatisfactory performance. Thisorously the anisotropic auto-correlation of soil prop-
shortcoming may be overcome by the second claserties, the general direction of the failure surface is
models. In their case the analytical evaluation is notisually considered in calculation of approximate cor-
possible, so the problem must be solved using itr€lation length corresponding to that direction.
erative probabilistic methods, such as Monte Carlo,

Latin Hypercube sampling, etc. The spatial autocorre3 LODALEN SLIDE

lation of soil properties enters the calculation throughSlide in Lodalen marshalling yard near Oslo, Norway
the distance-dependent correlation coefficigntle- (Sevaldson 1956), has been chosen for the purpose of
scribed commonly by the exponential equation due tahe evaluation of probabilistic numerical methods in



this study. The slide is well documented, and it alsofour undrained tests have been performed in order to
served to EI-Ramly et al. (2006) for evaluation of aconstruct each failure envelope. There was no marked
simpler probabilistic approach to slope stability anal-difference between samples within and samples out-
ysis, which may be compared with the present resultsside the slide. The statistical distributions of the mea-
The slide occurred in 1954 at the site where thesured parameters together with the gaussian fit are
marshalling yard was enlarged about 30 years ag@lotted in Fig. 4.
The inclination was approximately 1:2, as shown in
Fig. 2, which depicts the mid-section through the slide
with consecutive excavation steps. The main part of
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the slide is formed in comparatively homogeneous
marine clay of sensitivity between 3 and 15 with some > 03
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Figure 2. Mid-section through the Lodalen slide, from Sdsah 0
(1956) 6 7 8 9 10 11 12 13 14 15

c [kPa]
The pore pressure measurements are shown in Figigure 4. Statistical distributions ¢f andc as measured by Se-
3. The measurements show a definite increase of poraldson (1956)
pressure with depth relative to the hydrostatic pres-
sure distribution. There is thus an indication of arte-
sian pressure in the ground, which can be explained FINITE ELEMENT SIMULATIONS
by the rise of the country behind the slope. The problem has been simulated using determinis-
tic finite element method, combined with the ran-
Pore Water Pressure, u (m of water) dom field theory by Vanmarcke (1983). The finite el-
L L S ement mesh, including dimensions, is shown in Fig.
\ = 13307 5. The mesh represents the slope at the mid cross-
R?=0.99 section through the slide (Fig. 2), which is slightly
steeper (5:9) than the overall slope of the slide (1:2).
: The mesh consists of 1123 9-noded isoparametric
N\ square elements, which reduce to triangles or irreg-
. ular quadrilateral elements at the slant mesh bound-
8 r N ary. Fig. 5 also shows assumed position of the water
TN 3 table, coming from piesometric measurements. The
| Pressure artesian pressure (Fig. 5) is modelled by increased
12 unit weight of water. The slope is loaded by a grad-
[ @ Plez. A ' ual increase of the gravity acceleration until the fail-
@ Piez. B . .S . .
| aPiez. C ure occurs, which is indicated by a sudden increase of
1o L2 Flez D (data excluded) the slide mass velocity and impossibility to achieve
Figure 3. Pore pressures measured at the Lodalen site (Elyra CONvergence through the automatic time-stepping it-
et al., 2006; data from Sevaldson,1956) erative procedure.
As indicated in Sec. 2, the random fields of two
The values of the effective friction angle and  soil parameters that enter the calculatipragdc) are
effective cohesiort have been found by means of generated by means of Cholesky decomposition tech-
undrained shear tests on different samples. Three arique. The random field is unconditioned (i.e. it does

Depth Below Phreatic Surface, Z (m)




_ of the random field, correlation lengéhis in general
ERa=as B the most difficult to evaluate, and certainly it cannot
= be evaluated from the data available from the Lodalen
slide site. For this reason, a parametric study on the
influence of this uncertain parameter has been per-
formed. In all cases, the same correlation length for
both variablesy andc is considered. The horizontal
correlation lengthy,, took values 1, 10, 20, 50 and
100 m; and the vertical correlation lengthl and 10
Figure 5. Finite element mesh used, with dimensions and asm' Combinationd;, = 1.m. and@v_ = 10 m. ha_s been
sumed position of the ground water table. disregarded as unrealistic. Typical realisation of the
random fields ofp andc, for #,, = 100 m andé, = 1

not coincide with measurement results at exact med? {ogether with the velocity field at failure, is shown

surement locations). The amount of data available i§" Fig. 6. - _
insufficient to produce a reliable conditioned random, !N addition to the second class method calculations,
field. The statistical distribution of the output variable tW0 more simulations have been performed. One with

(gravity acceleration at failure) is found by means ofthe §|mpler first class method of Sec. 2 (infinite cor-
the Monte Carlo method. relation length) and the second one with the extended
The two input random variables(andc) are de- first _class meth_od. In the latter case, an inf!nite cor-
scribed by gaussian statistical distributions, as showfg!ation length is assumed for the random field real-
in Fig. 4. As the experimental data show almost ngSation, whereas standard deviationsyofind c are
cross-correlation between the two variables (crosste€duced by the factoy = 0.206 of Eq. (5) that corre-
correlation coefficient between the two parameters i§PONAS o the integration of the Markov function (Eq.
-0.0719), the two fields have been simulated as uncof3)) foré = 10 m along the potential failure surface of
related. In the present paper it is assumed that the did+ = 45 M, which comes from the deterministic slope
tributions in Fig. 4 represent the inherent spatial vari-Stability analysis.
ability of soil properties, i.e. error introduced through
inaccurate laboratory procedures and uncertainty due PROBABILITY OF FAILURE
to insufficient data available are neglected. For dis-
cussion of the latter two aspects, the reader is referred
to Schweiger and Peschl (2005).
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Figure 7. Evaluation of the probability of failure and 95.4&h-

A fidence intervals of the Monte Carlo simulation from theistat
iR R tical distribution of the gravity acceleration at failuge for the
EEE cased, =60, =10m.

The output variable coming from the Monte Carlo
simulations is the gravity acceleration at failug
Typical statistical distribution of this variable (for the
cased, = 0, = 10 m) is shown in Fig. 7. Clearly, the
Figure 6. Typical realisation of random fields of uncorretat _dl_strlbut|on Ofgy flts. closely the gaussian d'St.nbUtlon’
variablesy ande for 6, — 100 m andf, — 1 m, together with 1t iS therefore possible to use the gaussian fit to calcu-
the velocity field at failure. Lighter areas gfandc are softer. late the probability of failure, which is equal to the

area below the gaussian curve fgr< 1 (as demon-

As discussed in the Introduction, the last parametestrated in the nested image in Fig. 7). In this paper, the




probability of failure has always been calculated frompredictions. This issue is discussed further in the fol-
the gaussian fit, rather than from the ratio of the numiowing section.

ber of failed slopes to the total number of simulated

slopes. Therefore, the "nomingl? is used instead of 7 DISCUSSION

the "calculated” one, in the sense as defined by Wangrom the nested image in Fig. 7 it is clear that the

and Chiasson (2006). _ ___ probability of failure is increased by both decrease
also enables us to calculate the confidence intervalgeyiations|g 7). There are two conceptually different
of the Monte Carlo outcome using the Chebychev inyhechanisms, which induce differences in statistical

equality (Eq. (2)), as also demonstrated in Fig. 7. Fogistributions ofg, calculated by the first and second
the used number: of Monte Carlo realisations (typ- ¢Jass models:

ically, 500 < m < 1000 in the present work) the un-
certainty in determination of the mean valueggfis

: ) 1. Incorporation of the spatially variable structure
for 95.4% confidence intervals rather small. P b y

into the numerical simulation may lead to con-
centration of less competent materials into dis-

6 RESULTS OF SIMULATIONS

Figure 8 shows the nominal probability of fail
as a function of the correlation length, together with

tinct zones. The failure mechanism than devel-
ops through these zones, which controll the over-
all behaviour of the structure. This mechanism

the 95.4% confidence intervals. For the second class
models, there is a clear indication of increasing prob-
ability of failure with decreasing correlation length.
The limit value with an infinite correlation length
(first class model) gives approximately 20 % lower
This demonstrates that disregarding the spatial cor-
relation structure would lead to unconservative de-
sign. The graph also allows us to evaluate uncertainty
in calculation ofp; as a function of uncertainty in
the particular value of). Inaccurate assumption of
0, within the realistic bounds (Sec. 1), may lead to
approximately 10% uncertainty in the calculaed
Any realistic guess of is therefore better than appli-
cation of the first class model.

would induce decrease of theg,] value.

2. In the case the first mechanism is not applicable
(for example if the failure surface is pre-defined),
the failure surface passes with the same proba-
bility softer and harder regions. The overall be-
haviour of the structure is then approximately
controlled by the average values of the material
parameters along the failure surface. These aver-
age values have lower variance when compared
to the generic statistical distribution of the input
variable, which is the idea employed in the ex-
tended first class models. The probability of fail-
ure is in this case increased by the decrease of
olgr] under constant|gy|.
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Figure 8. Probability of failure as a function of the cortela
length. Results by the first class and extended first cladsadst

095 B " i dicted by the first class, extended first class, and sec-
09 | ' v % ond class methods far= 10 m. The three methods
0.85 | significantly highew[g¢] than the extended first class
and second class methods. Investigation of Fig. 6 re-
2.class, B,=1m --m-- | regular shape, which is apparently not influenced by
0.75 | 2. class, 6, =10 m — . the spatial distribution of the soil properties. There-
‘ ex’f. 1. Flas§, Of 1Q m =
by the second mechanism, which is also revealed in a
good agreement between the extended first class and
| The inapplicability of the first mechanism may be
included. explained by the use of the simple Mohr-Coulomb
Figure 8 also shows results of the extended firstandom variables. As both the parameters influence
class model for = 10 m. Results are within Monte the shear strength in a conceptually similar manner,
second class model withy, = 6, = 10 m. Incorpo- not produce distingushed areas of lower strength, as
ration of spatial averaging into the first class modelthe influence of variation of and ¢ is statistically

S : ' | Figure 9 shows statistical distributions @f pre-
predict similar[gy], the first class method predict
0.8 f - veals that the failure surface has in the present case a
Lm - fore, the overall behaviour is in this case dominated
the second class models.
constitutive model, witlr andy asuncorrelatednput
Carlo confidence intervals with the simulation by thethe use of uncorrelated random fieldsc@ind does
thus leads in this case to significant improvement incanceled. This unrealistic situation is caused by the
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Figure 9. Distributions ofy for the first class, extended first
class, and second class methodstfer 10 m.

1.2 14

fact that the parameters and ¢, found by lineari-
sation of a nonlinear failure envelope, do not repre-
sent sufficiently the soil behaviour. If enough data for
model calibration are available, it is preferable to use
advanced constitutive model, which relates the fail-
ure surface to other state variables (e.g., void ratio),
as done within probabilistic framework by Niemunis
et al. (2005) and Hicks and Onisiphorou (2005). For
example, Hicks and Onisiphorou (2005) used an ad-

vanced constitutive model and showed that presence

of pockets of highly liquifiable soil within the overall

dense sand strata would lead to a significant reduction

of the stability of the slope subject to dynamic load-
ing, they thus demonstrated the importance of the first
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8 CONCLUDING REMARKS

A particular slope in a fine-grained soil has been sim-
ulated using finite element method combined with the
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ture would lead to unconservative design.
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tial averaging along the slip surface is the main factor
dominating the slope behaviour and therefore simpler
probabilistic methods with infinité and reduced vari-
ance may be used to simulate its behaviour. This re-
sult, however, would not be valid if more advanced
material models were used.
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