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1 Abstract

An advanced hypoplastic constitutive model is used in fodiséic analyses of a typical geotech-
nical problem, strip footing. Spatial variability of soibpameters, rather than state variables, is
considered in the study. The model, including horizontal aertical correlation lengths, was cali-
brated using a comprehensive set of experimental data anfisan horizontally stratified deposit.
Some parameters followed normal, whereas other followgddomal distributions. Monte-Carlo
simulations revealed that the foundation displacengrior a given load followed closely the log-
normal distribution, even though some model parameterg wistributed normally. Correlation
length in the vertical directiod, was varied in the simulation. The case of infinite correlatio
length was used for evaluation of different approximatebphilistic methods (first order second
moment method and several point estimate methods). In titona field Monte-Carlo analyses
with finite #,,, the vertical correlation length was found to have minoeetfion the mean value of
uy, but significant effect on its standard deviation. As expécit decreased with decreasifig
due to spatial averaging of soil properties.
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2 Introduction

Parameters of simple constitutive models, which are tyjgiagsed in probabilistic analyses of
geotechnical problems, are dependent on the soil stateseTim@dels thus do not allow us to
distinguish whether the measured variability of soil pmtips is caused by the variability of soil
type or soil state. Contrary to this, advanced constitutha@dels adopt soil parameters that are
specific to the given soil granulometry and mineralogicahposition of soil particles. State vari-
ables (such as void ratie) then incorporate the state-dependency of the soil behavim this
respect, the sources of the objective (aleatory [25]) uat#y in soil mechanical behaviour can
be subdivided into two groups:

1. In some situations, soil mineralogy and granulometry beagegarded as spatially invariable,
and the uncertainty in the mechanical properties of soibdiéome from variability in the
soil state. In this case, sgarametersof advanced models may be considered as constants,
and in the analyses it is sufficient to consider spatial Wit of state variableslescribing
the relative density of soil.

2. Inother cases, soil properties are variable due to vaigianulometry and mineralogy of soil
grains. Such a situation is for example typical for soil dafsoof sedimentary basins, where



the granulometry varies due to the variable geological timms$ during the deposition. In
such a case, it is necessary to consider spatially variaillparametersn the simulations.

Application of advanced constitutive models within proitiathc numerical analyses still remains
relatively uncommon in the geotechnical scientific litarat Moreover, most of the applications
of probabilistic methods in combination with advanced soihstitutive models consider the un-
certainty in the state variable only, while keeping conistatues of the model parameters. As an
example, Hicks and Onisiphorou [27] studied stability oflerwater sandfill berms. Their aim was
to study whether presence of 'pockets’ of liquifiable matemay be enough to cause instability
in a predominantly dilative fill. They used a double-hardgnionstitutive model Monot [33] with
probabilistic distribution of the Been and Jefferies statgable) [3]. As the aim of the research
was to study whether pockets of loose material may caussrdaif the berm, the approach cho-
sen (variation in the state variable only) is fully justifi@b In other applications, Tejchman [45]
studied the influence of the fluctuation of void ratio on fotima of the shear zone in the biax-
ial specimen using the hypoplastic model by von Wolfferffdd7]. Similar procedure and the
same constitutive model was used by other researchers ta @l@ment simulations of different
geotechnical problems [34, 36]. Finally, Andrade et al. dahsidered random porosity fields in
combination with an advanced constitutive model and stuttieir influence on strength and shear
band formation in a biaxial specimen.

The goal of this paper is to present a complete evaluatioheoirifluence of parameter variability
of an advanced constitutive model and its influence on ptied& of a typical geotechnical prob-
lem. To utilise the advantage of the non-linear formulatidrthe constitutive model adopted, we
study settlement of a rigid strip foundation subjected tdvaryload. While most application of
probabilistic methods to the foundation problems focushmnevaluation of the bearing capacity
[17, 15, 7, 11, 28, 29, 21, 13], less attention is payed to thentification of the uncertainty in
serviceability limit states. In the available studies, thehors focus on different aspects of the
problem, such as foundation size and geometry [30], uriogrtan the foundation load [5], 3D
effects [19, 14], differential settlement issues betweem footings [12, 14, 34], cross-correlation
between elastic parametefsandr [35], the effects of layers of different materials in the soib
[32], and comparison with simpler probabilistic methodsc{s as the first order second moment
method) [20]. In many publications, the authors addressrtfieence of the correlation length
[35, 14, 19, 12]. In most of these works, however, the soil iglelled as a linear elastic material
(or elastic material with stress-dependent Young modw80$)[ An exception is the contribution
by Niemunis et al. [34], who used non-linear hypoplastic sladth constant parameters and ran-
dom fields of void ratio in the cyclic analyses of two adjacsnip footings. Most of the available
studies thus do not consider the non-linear soil behawehich is important for correct predictions
of foundation displacements. This issue is addressed ipriésent work.



3 Experimental program

The material for the investigation comes from the south phxpper Cretaceous Trebon basin in
south Bohemia (Czech Republic) from the sand pit Kolny [42]e pit is located in the upper part
of the so-called Klikovské layers, youngest (senon) ataitthe south Bohemian basins. These
fluvial layers are characterised by a rhythmical variatibgravely sands, sands and clayey sands.

Altogether forty samples were obtained from a ten meterh higwall in a regular rectangular
grid (Fig. 1). The laboratory program was designed to pmviar each of the samples enough

Figure 1: The wall of the sand pit in south part of the Tfebagin. Black dots represent positions
of specimens for the laboratory investigation.

information to calibrate the hypoplastic model for gramutzaterials by von Wolffersdorff [47].
The following tests were performed on each of the 40 samples:

e Oedometric compression tests on initially very loose speais with loading steps 100, 200,
400, 800, 1600, 3200 and 6400 kPa.

e Drained triaxial compression test on specimen dynamiaaiyipacted to void ratio corre-
sponding to the denda-situ conditions. One test per specimen at the cell pressure of 200
kPa.

e Measurement of the angle of repose.
Results of all the laboratory experiments are presentdtei\ppendix. Location of the specimens,

labeled as:1 to j4, is indicated in Fig. 1. Note that 4 specimen$, 4, f1, f2) showed unusual
behaviour, and these specimens were not used in the ewaluati



In addition to laboratory experiments, fiugsitu porosity tests with membrane porosimeter were
performed at different locations within the area from whilbbb samples were obtained. Average
natural void ratio was 0.41. The porosity was found to bdyfainiform and the sand was in very
dense conditions. Note that the triaxial tests were notoperéd at the initial void ratio exactly
corresponding to the in-situ conditions, as this was notknéor each of the 40 samples. This
fact should, however, not influence the model calibratiaparameters of advanced hypoplastic
models depend on soil type and granulometry only, and doigotfisantly depend on its state
[26, 24].

4 Calibration of hypoplastic constitutive model

The constitutive model selected for this research work $gan hypoplasticity, a particular class
of incrementally nonlinear constitutive models. The hylpsfic equation may be written as

T = f.L:D+ fs faN|D]. 1)

whereT is the objective (Jaumann) stress rddds the Euler’s stretching tensor autlandN are
fourth- and second order constitutive tensors, respdgtive and f; are scalar factors express-
ing the influence of the stress level (barotropy) and der{gigknotropy). The model adopted in
this research was proposed by von Wolffersdorff [47] basethe earlier work of the Karlsruhe
research group (e.g., [31, 22, 2]). For an interpretatioth@imodel response see [23].

The hypoplastic model by von Wolffersdorff [47] has eightteral parameters, namely., hs,
n, e4o, €0, €0, @ andB. Their calibration procedure was detailed by Herle and Gudg26].
A somewhat simplified calibration procedure has been adoipt¢he present work. The whole
process of calibration has been automated to reduce sirtijeof calibration.

The critical state friction angle. has been obtained directly by the measurement of the angle
of repose. The hypoplastic model considers that the sd# @tathee vs. p space is bound by
maximum ¢;) and minimum ¢,) void ratios, as shown in Fig. 2. In addition, critical stéte in

thee vs. p space is characterised by void ratjo The three curves are described by formula due

to Bauer [2]
€c ed €& 3p\"
B e R 2)
€0 €do €0 hs

with five parameters. The parametercontrols the curvature of the curves ahg controls the

overall slope of the curves. The parametefs e.o ande;y control their positions (they represent
the values of the reference void ratios for= 0 kPa).

The parameters, andn were directly computed from oedometric loading curves @ittierval of
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Figure 2: The dependency of the reference void ratjog. ande; on the mean stress (Herle and
Gudehus [26]).
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Figure 3: Computed curves usihg, n, e,o parameters for one column of specimens.

o4 € (100,1000) kPa using procedure detailed in [26]. Following Herle andi€ws [26], initial
void ratioe,,., Of aloose oedometric specimen was considered equal toitlealcstate void ratio
at zero pressure,y. Figure 3 shows comparison of compression curves calculsig formula
by Bauer (2) with compression curves obtained from the oedidontest (for illustration purposes
specimens from one column of the sampling grid only).

Void ratioseyy ande;y were obtained from empirical relations. The physical megrof ¢y is
the reference void ratio at maximum density, whereas vdid g, represents the intercept of the
isotropic normal compression line with= 0 axis. Void ratioe;, was obtained by multiplying.o
by a factor 1.2 [26]. The minimum void ratig,y was also calculated from.,. e.o was multiplied
by a factor0.379. This ensured that the initial void ratio for triaxial sp@ens was always higher
thaney and the initial state was close to the state of maximum denSlite state thus corresponded



to the densdn-situ conditions.

The last two parameters of the hypoplastic madeind 8 control independently different aspects
of soil behaviour. Namely, the parametecontrols the shear stiffness andtontrols peak friction
angle. They were calibrated by single-element simulat@inthe drained triaxial tests. Fig. 4
shows comparison of typical experimental and simulgted. ¢, ande, Vs. e, curves (specimens
from one column of the sampling grid only). The hypoplastiocdal calibrated using the outlined
procedures reproduced closely thes. ¢, curves. It somewhat underestimated the initial rate of
dilatancy.
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Figure 4: Typical experimental and simulated results ofraé triaxial tests.

5 Probabilistic distribution of the model parameters and carelation
properties

Statistical distribution of the parameters calibratechggixperiments described in Sec. 3 is shown
in Fig. 5. Parameters;; andegyg of the hypoplastic model are not presented in Fig. 5 as they ar
multiples of the value of.y. For each parameter, suitability of normal and log-nornistrithutions
to represent the experimental data was studied using KarnowgSmirnov andy? tests. More
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suitable distribution and its characteristic values adécated in Tab. 1. These values were used in
all subsequent simulations.
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Figure 5: Statistical distributions of hypoplastic paraens.

5.1 Cross-correlation of parameters

The correlation coefficienix y- between two variableX” andY” is defined as

E[(X = px)(Y — py)]
o[X]o[Y]

pPXY = ©)
where E is the expected value operator (megm)and o represent mean and standard deviation
respectively. Table 2 indicates the correlation coefficiebetween different parameters for the 36
evaluated specimens. Note that the parametgrande;q are not included in Tab. 2, as they are
fully correlated withe.q as a consequence of the adopted calibration procedure.

Table 2 shows that the cross-correlation between the pagasrie rather poor, with the exception
of negative correlation betwees. - « ande. - o, and positive correlation betweéh- a. In these
casegp| > 0.5.

The dependency of these parameter pairs is given in Fig.tBoAdh some dependency is evident,
it is considered not to be significant to influence remarkabéyresults of finite element simula-
tions. For this reason, no cross-correlation of paramétassbeen considered in the simulations.
An exception are the parametery, 4o ande;y, which have been considered as fully correlated
due to the reasons explained above.



Table 1: Characteristic values of statistical distribugiaf parameters of the hypoplastic model
("norm.” for Gaussian distribution, "log” for log-normalistribution) .

param. dist. mean st. dev.
e log. 35.F 1.62

hs log. 3.82GPa 14.6 GPa
n log.  0.289 0.095

€co norm. 0.847 0.111
€io norm. 1.016 0.133
€do norm. 0.318 0.042
a log. 0.074 0.048
154 norm. 1.261 0.605

Table 2: Cross-correlation of the model parameters.

param.| o.  hg n €0 « 154
Ve 1.00 -0.27 0.19 0.16 -0.51 -0.23
hs 1.00 -0.24 0.13 0.05 -0.28
n 1.00 -0.20 -0.16 -0.25
€c 1.00 -0.71 -0.42
« 1.00 0.60
3 1.00
iz trend line 1 trend line 2'2
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Figure 6: Cross-correlation between parameter pairsa, e. - o, 5 - .



5.2 Spatial correlation of parameters

In addition to the cross-correlation between differentapagters, complete probabilistic descrip-
tion of the soil deposit requires specification of the spatido-correlation of the parameters, i.e.
the dependency of the correlation coefficient of given patamon distance. This dependency is
commonly approximated using expression due to Markov

-\ 2 N\ 2
p = exp —2\/<£> +<9—U> (4)

wherer;, is the horizontal distance between two specimepnss the vertical distance argj, and
0, are so-called correlation lengths in horizontal and vatttirections respectively [46]. These
describe a distance upon which the parameters are signijicamrelated.

The correlation lengths could successfully be evaluatétjysarameterp,. only. This parameter
depends directly on soil granulometry. The least squaré Eto (4) through the experimental data
is shown in Figure 7, leading #), = 242 m andf,, = 5.1 m.
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Figure 7: Evaluation of the correlation coefficignin horizontal (a) and vertical (b) directions for
parameterp,, together with least square fit of Eq. (4).

Note that using the 40 samples described in Sec. 3, prdgtivalcorrelation is observed in the
vertical direction. The obtained valde = 5.1 m is thus implied by the adopted vertical sampling
distance only, rather than by the actual autocorrelatiopgnties. For this reason, additional sam-
pling and experimental programme was devised. In the additiexperiments, only the critical
state friction anglep. (angle of repose) was studied. The vertical sampling digtavas 0.05 m,
and the soil profile was 5 m high. The location of the studiegfiler was within the same quarry
wall as the profile used for extraction of the 40 specimens f8ec. 3.

Results of measurements are shown in Fig. 8, altogetherandiétailed view of the profile. The
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measurements are highly scattered. Nonetheless, an attesipeen made to distinguish zones of
different average friction angles (shown as bold lines o F). Average length of these zones was
used as an approximation of the vertical correlation lenigéding tof, = 0.31 m. Figure 8 also
shows random field (see Sec. 8.3)0f generated with parameters from Tab. 1 &pd= 0.31 m
andd;, = 242 m. The generated profile approximates well the measuredbdion of . and the
observed layered structure of the soil deposit.
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Figure 8: Evaluation of the vertical correlation lengthngsdetailed measurementsy@f. Random
field for 6, = 0.31 m.
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6 Strip footing problem

The influence of spatial variation of parameters of the higmit model was studied by simu-
lations of a typical geotechnical problem — settlement ofrig $ooting [44]. Simulations were
performed using a finite element packaehnog ProfessiondB8]. The individual simulations
were deterministic. Probabilistic aspects were introduoeSec. 8 by variation of the input mate-
rial parameters and evaluation of the simulations outputs.

The problem geometry and the finite element mesh for mosyseslare shown in Figure 9. The
mesh consisted of 1920 nine-noded quadrilateral eleméiis.foundation was analysed as rigid
and perfectly smooth. Element size in the vicinity of thetfiog was 0.5 m. The adopted mesh
density was found to be sufficient for all analyses, excepanflom field analyses (Sec. 8.3) with
0, = 0.31 m. In these analyses, four-times denser mesh was used (#&3@aded quadrilateral
elements with the element size in the vicinity of the footatgial to 0.25 m).

5 m , foundation

25m

55 m L

Figure 9: The problem geometry and finite element mest# for 1 m. Four times denser mesh
used in analyses with, = 0.31 m.

The soil unit weight was 18.7 kN/n The initial i, = 0.43 was calculated from Jaky formula
Ky = 1 — sin ., with average value op. measured in the experiments. The initial value of
void ratioe = 0.48 was used in simulations. The simulated soil was thus sligbtbser than
measuredh situ. In this way, it was ensured that the statistical distrimuidf e; did not have to be
truncated due te < ey (such a state is inallowed in hypoplasticity). Trunctatadrthe statistical
distribution would complicate subsequent evaluation ofpdéer probabilistic methods (Sec. 8.2).
Spatial variability of void ratio was not considered. Thalgses thus focused on the evaluation of
the influence of the spatial variability of soil parametdrsall the cases, foundation displacements
corresponding to the load of 500 kPa were evaluated.
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7 Sensitivity analysis

First, sensitivity of the results on different materialgraeters was evaluated. The subsequent prob-
abilistic analyses from Sec. 8 then focused on the most imdflaéparameters in the evaluation of
the influence of the parameter uncertainty. In sensitivitsdygses, the problem was for each of the
parameters simulated three times - using the mean valubs pirameters, and fpf X | + o[ X].

X stands for a parameter value in the case of normally diseibparameters and its logarithm in
the case of lognormally distributed parameters. Only omarpater was varied at a time, all other
parameters were given their mean or median values (for rlyranad lognormally distributed pa-
rameters respectively). The results were graphicallyasgted using so-called "tornado diagram”
(Fig. 10).
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Figure 10: Tornado diagram showing sensitivity of founaiatilisplacements on different parame-
ters.

As expected, foundation settlements are influenced mastis@ntly by the parameters controlling
soil bulk modulus (parametefs, andn). They are followed by the parametgrwhich influences
the shear stiffness. Less significant is the influence of #h&tive density, controlled through
parameterg.g, e;o0 andeyy. Note thate.; and the other two reference void ratiog ande,, were
varied simultaneously to ensure constant ratios betwesan tinposed during calibration (Sec. 4).
Parametersy and ¢. have the smallest influence on foundation settlements. erpasameters
control the soil strength, rather then stiffness, and tirivor influence on pre-failure foundation
settlements is thus a reasonable observation.



8 Probabilistic analyses

In the analysis of uncertain systems, the uncertainty ofrtpat variables is propagated through
the system leading to the assesment of uncertainty of irss [41]. The strip footing problem

in scope of this study can be for tlgiven parameter setonsidered as deterministic. Such a
problem can be solved using probabilistic numerical metho@ihe probabilistic characteristics

of the problem are studied by variation of the input paransedéd evaluation of the simulation

output.

The following probabilistic methods have been evaluatetha present work. First of all, the
strip footing problem has been simulated without considespatial variability of the parameters
(i.e. with infinite correlation length) using a fully genkfdonte-Carlo method. These results
serve as a benchmark for the simulation using approximateapilistic methods. Then, different
approximate analytical probabilistic methods for evabratof the first two statistical moments
of the performance function have been evaluated. Theseoaetire much less computationally
demanding, and they are thus more suitable for practicdicapipns provided they give accurate
results. Finally, spatial variability of the parametersyddeen introduced through Monte-Carlo
simulations based on random field theory by Vanmarcke [46].

The geotechnical problem of the interest could be, aparh filee above mentioned probabilis-
tic methods, solved using more general stochastic numexniadysis. Two main variants of the
stochastic finite element method (SFEM) are available inliteeature [41]: i) perturbation ap-
proach, which is based on a Taylor series expansion of th@ones vector and ii) the spectral
stochastic finite element method, where each responseityuamepresented using a series of ran-
dom Hermite polynomials [16]. In the SFEM methods, the utaiety is typically treated within
the finite element discretisation, and it is thus often natsfae to apply the existing determin-
istic finite element tools without major modifications. Sumkthods are not readily available to
prectitioners as yet. They are thus outside the scope ofrdszpt work.

8.1 Monte-Carlo analyses with infinite correlation length

The probabilistic aspects of the problem analysed in thigrimution are fairly complex. The con-
stitutive model and thus also the dependency,ofn the parameter vect are non-linear. Some
of the model parameters follow Gaussian distributions, re&e other follow lognormal distribu-
tions. For this reason, to obtain reference values unbibgedmplifications involved in approx-
imate solutions (Sec. 8.2), analyses with spatially irakgle fields of input variables were first
performed using Monte-Carlo method. Another reason foningnthe Monte-Carlo analyses was
that the approximate methods do not provide any informatiothe type of the statistical distribu-
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tion of the output variable. They only approximate the fitatistical moments (typically the first
two moments, i.e. mean and standard deviation). In Montwe@aalyses, uniformly distributed
random numbers were generated by an unbiased random nuerteragpr. Gaussian distributions
of the parameters were then obtained by the Box-Muller foanmsation method [4].

The Monte-Carlo method is fully general, but depending an fihoblem solved it may require
significantly large number of realisations and conseqyemttonsiderable computational effort.
Figure 11 shows the dependency of the mean valug| and standard deviatianu, ] for a random
field simulation from Sec. 8.3. At least 700 Monte-Carlo isstlons is required to get a reasonably
stable estimate gi[v,] ando[u,], depending on the standard deviation of the output varidble
all the presented simulations, at least 1000 realisatiars werformed.

0.24 | 1014
0.22 }“ 1 0.12
£ E
= 02 101 —=
= 3
= T T ©
0.18 & 1 0.08
, u[u] m] —— |
0.16 c‘;[uy] [m] — 0.06
0 500 1000 1500

number of Monte-Carlo realisations

Figure 11: The dependency pfu,| ands[u,] on the number of Monte-Carlo realisations (random
field simulation with all parameters random ahd= 5.1 m).

Four analyses were performed. In three of them, only onenpetex was varied at a time and the
other parameters were given their mean (normal parameaiensiedian (lognormal parameters)
values. These analyses were performed for the paranigeteisands (the most influential param-
eters, see Sec. 7).follows a normal distribution, where#&s andn follow lognormal distribution.

In the last analysis, all parameters were considered asmnand

Figure 12 shows probabilistic distributions @f and Tab. 3 gives the values pfu,] ando[u,].
The distribution of the output variable is well describedthg lognormal distribution, even in the
case of3 as a single variable parameter, which itself follows the €s&@n distribution. Slight
deviation from the log-normal distribution show the anabysvithn and all parameters random.

14



0.12 0.14

0.1t 0.12
3 3 01}
S 008 hg random c '
[ <] H
= = 008 [ | n random
g 006} s |
= £ 006 | |
© 0041 g 004 ;¢

0.02 0.02 |

0 : - 0 = ‘
0 0.2 0.4 0.6 0.8 1 0.6 0.8 1
uy [m] uy [m]
0.16 0.1 ~
0.14 | 0.09 1 /p
0.08 \

B random

all param. random

Rel. frequency
o
o
[e3]

Rel. frequency
o
o
2]

0.06 0.03
0.04 0:02
0.02 O.0L [T T
0 ‘ o M P T T T e e
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

uy [m] uy [m]

Figure 12: Probabilistic distributions of, for Monte-Carlo analyses with infinite correlation
length.

Table 3: Results of probabilistic simulations with infiniterrelation length /[, | ando[u,] in
meters).

method Monte-Carlo | FOSM RosPEM ZNIII

random param| plu,| ofuy] | pluy]  oluy] | pluy]  oluy] | pluy]  ofuy

hs 0.231 0.128 0.193 0.107 0.225 0.107 0.225 0.127
n 0.197 0.083 0.193 0.089 0.198 0.089 0.197 0.082
6] 0.217 0.087 0.193 0.077 0.211 0.077 0.219 0.087
all param. 0.230 0.164 0.193 0.164 0.240 0.170 0.255 0.197
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8.2 Simulations with approximate analytical probabilistic methods

The Monte-Carlo method, used in the previous section, ig §éneral, but requires large number
of trials (approx. 1000 in the present case, Fig. 11). Thidtdi its practical applicability. For this

reason, approximate approaches to evaluate statistis@lbdiion of the performance function,
which require remarkably lower number of simulations, anpuar in geotechnical engineering
applications. This section is devoted to evaluation of thalieability of several popular methods
to simulate the complex non-linear probabilistic probldodged in this paper.

The problem solved may be in general writtenYas= g(Xi, Xo,...,X,,), whereY is the per-
formance function (in the present casé,= u,), andX = X; is the vector of random vari-
ables (in the present cask, is the vector of model parameters). Only independent (canee
Cov[X;, X;] = 0) normal random variableX; are considered in this work. Log-normal distribu-
tions of several parameters were converted to normal loligioins by considering their logarithms
in the computations. The parametets, eqo ande;y were varied simulatenously so they were
treated as a single random parameter.

The first method studied, possibly the most popular in gdwiieal engineering, is based on ap-
proximatingY by a Taylor series expanded about the expected values df iapdom variables
X;. Neglecting the second- and higher order terms leads toottmeving expressions for the first
two statistical moments df (meanu[Y] and standard deviation[Y']):

plY] = g(u[Xa], p[Xa], ..u[Xn]) ®)

2y =Y ( g;;(j[XiDZ ®)

i=1

where the partial derivative derivativéd”/0X; are taken at the:[X;]. The most common ap-
proach uses finite differences for their approximations fhough the derivative at the point is
most precisely evaluated using a very small incremet gevaluating the derivative over a range
of +0[X;] may according to some authors better capture some of théimear-behaviour of the
function over a range of likely values [48]. Thus, we have

oY g(plXi] +o[Xi]) — g (u[Xi] — o[Xi])

0xX; 20[X;] 0

Egs. (5) - (7) describe the so-called first-order (only forster terms of Taylor series expansion
are considered) second-moment (only the first two stagistioments o™ are calculated) method
(FOSM). The method requirez, + 1 simulations { is a number of random variables) and it
is accurate for performance functions linearXn. With increasing non-linearity of” in X,
however, omission of the higher order terms of Taylor seeigsansion and the finite-difference
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approximation obY /0X; leads to an accumulation of an error [6].

In the second class of methods (denoted as point estimatedetPEM), probability distributions
for continuous random variableX; are replaced by discrete distributions. Each component of
the discrete distributionppint estimatgis associated with the corresponding weight such that the
discrete distribution has the same first few moments as théncmus random variable. Transfor-
mationY = ¢(X) can be used to calculate the associated discrete distribafithe performance
functions, whose moments approximate the momenis iof the continuous case [8]. This proce-
dure is equivalent to the calculation of the integralofising numerical quadrature [8, 49].

A number of point estimate methods is available throughbetliterature. In this work, we eval-
uate the basic method by Rosenblueth [39] (denoted as RosREEN more advanced method by
Zhou and Nowak [49] (denoted as ZNIlII [37, 40]). The RosPEMhuod require®™ simulations,
whereas the ZNIII method requir@s? + 1 simulations. The mean and standard deviatio® of
can be obtained from

plY] = wig(X;) (8)
=1
V] = w; (9(X;) — ulY])? 9)
=1

Sample points and corresponding weights for the two evadliatethods are given in Tab. 4 in
terms of standard normal variabl&s For normally distributedX we haveX = u[X] + Zo[X].

Table 4: Sample points and corresponding weights for theawvaduated point estimate methods.
n is number of random variables.

method  sample poinfg; weight factorsw;
ROSPEM Z = (£1,+1,--- +1)° 2%
ZNIII Z = (0,0,...0) w:”22f2
Z= (+v/n+2,0,...0)" a w:ﬁ
n+2 n+2 1
2= (552 R00) we

@ points include all possible permutations of coordinates

The first two statistical moments predicted by the approknmaethods from this section have
been compared with the reference values from Monte-Camailsitions (Tab. 3). In the case of
single random parameters, the ZNIIl method provides vecyiate results, both in terms pfu, |
ando[u,]. The ZNIII method is followed by RosPEM and finally by FOSM, ial significantly
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underpredictg:[u,]. A different picture is, however, obtained if all the six @mendent parameters
are varied at the same time. The ZNIII method overpredicts pf., ] ando[u,], while the FOSM
method underpredicts[u,| and gives accurate predictionsdfu,|. The most accurate are in this
case predictions by the RosPEM method, with modest oveqti@d of both y[u,] and o[u,].
Incorrect predictions by the most evolved ZNIll method maydxplained by the locations of
sample points, which are in the ZNIll method dependent omtimeber of random variables. With
a large number of variables involved in the present simati the sample points are located far
from the mean parameter values (Tab. 4), leading to inseifficiepresentation of the non-linearity
of g(X) in the range of the most likely values Xf.

8.3 Random field simulations with different vertical correlation lengths

In the next set of analyses, spatial variability of soil paeters as evaluated in Sec. 5.2 was
considered. Due to the uncertainty in the evaluation of tréical correlation length, the analyses
were repeated with different values &f. Random fields were generated using method based on
the Cholesky decomposition of the correlation matrix (pa@nt method [10]). The point statistics

of random input variables was transformed through spatileaying over the element size [46, 18,
43]. All the parameters were considered as random in this; eas eqo ande;y were perfectly
correlated and the other parameters were uncorrelated.

Example random fields (parametérs and ) for 6, = 0.31 m are shown in Figure 13. The
same figure shows also corresponding distribution of vdid rEter 0.8 m of the foundation dis-
placement. Study of this example, as was well as the otharaiions not presented here, reveals
that the lowest void ratios occur in softer areas charagdrby low values of the parametgr
The parameteh, which also has a substantial influencewn(Sec. 7), affects due to its highly
skewed lognormal distribution (Fig. 5) the results in a gllolvay. The paramete$ controls the
local deformation pattern. Figure 13 also reveals that goplastic model predicts volumetric
compaction (decrease of void ratio) in the areas below thedation, whereas it predicts dilation
along the emerging shear zones below the footing.

Statistical distributions of the output variahlg are shown in Figure 14. In all the studied cases,
u, is well represented by lognormal distribution. This is deteit with the results of Monte-Carlo
simulations with spatially invariable parameters (Set).8.

Figure 15 and Tab. 5 presepfu,] and o[u,] predicted by the random field simulations with
different values of),. One can observe minimum value fu,] até,, = 1 m. The influence o,
on y[u,] is, however, minor. On the other handy., ] changes witlt,, substantially. The decrease
of o[u,] with 6, is caused by the spatial averaging [46] of soil propertieading to the reduction
of the effective variance of the input variables and coneatiy of the performance function. This
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Figure 13: Typical random field simulation with = 0.31 m (bottom part of the mesh not shown).

issue cannot be captured reliably by simpler probabilistethods described in Sec. 8.2.

9 Concluding remarks

A comprehensive set of laboratory experiments on stratffasdly deposit was performed in order
to calibrate the hypoplastic constitutive model. Some paitameters followed normal distribu-
tion, whereas other followed log-normal distribution. §haltogether with non-linear character
of the model, yielded quite a complex problem to be tacklegtmbabilistic methods. Known
positions of different samples enabled us to evaluateapaiirelation of the soil parameters. As
expected, due to the horizontally stratified texture of theasit, the evaluation showed large corre-
lation length in the horizontal direction, and significgrgimaller correlation length in the vertical
direction. Additional detailed measurementssfyielded an estimate @, as low as 0.31 m.

The model calibrated using the experimental data was subsély used in probabilistic analyses
of a typical geotechnical problem, strip footing. Firste ttase of infinite correlation length (spa-
tially invariable parameters) was simulated. It was shdvat the results were influenced the most
by the soil parameterk,, n and /3. Using Monte-Carlo simulations, it was found that the otitpu
variable (displacement, corresponding to certain footing load) followed a lognokafiatribution
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Figure 14: Probabilistic distributions af, in random field analyses with differefif, and all pa-
rameters treated as random.
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Table 5: Results of Monte-Carlo random field simulationshwiriable vertical correlation length
(pu[uy] andofu,] in meters).

12.3m| 0.225 0.119
51m | 0.226 0.089
2m 0.219 0.059
Im 0.215 0.039
0.31m| 0.217 0.023

0.25 - 0-15

———— j‘

02 | :

e . 101 _

g 015¢ . |

: 0.1 I e :

1 uu/¢ 0'05 b
0.05 |/

0 ) O'[lrly] [m] ----- -

—— 0
0 2 4 6 8 10 12 14
8 [m]

Figure 15: The dependency pfu,| ando[u,] oné, predicted by the random field method.
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closely, even in the case when normally distributed pararagsuch ag) were varied. The results
of Monte-Carlo analyses were then used for evaluation éémdift simpler probabilistic methods
(the first order second moment method and different poinines¢ methods). For the complex
problem of all parameters treated as random, neither thevF@8thod, nor the advanced ZNIlI
method yielded correct results, for different reasonsudised in the paper. The basic PEM method
by Rosenblueth [39] was found the most accurate, althougtillitoverpredicted the mean and
standard deviation af,,. Finally, spatial correlation of the soil parameters wasteainto account

in Mone-Carlo random field analyses. As expected, spatexiaging of parameters led to a reduc-
tion of variance ofu,,. This was particularly significant fa, = 0.31 m evaluated using detailed
measurements qf.. The influence ob,, on the mean value af, was minor.
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Appendix

The appendix summarises results of the laboratory expatsnesed for calibration of the consti-
tutive model and evaluation of the correlation properties.
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