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Abstract

Contact descriptions for interfaces between structural elements (e.g. piles,
anchors, tunnel-linings) and soils are widely used in geotechnical engineering.
Most of these constitutive interface models, developed for sands, consider 2-D
conditions. For clays, only a limited number of 3-D interface models exist. In
this paper the fine-grained continuum models based on hypoplastic theories
are adapted for the constitutive modelling of fine-grained interfaces. To this
end, we develop a general approach to convert the existing continuum soil
models into an interface model adopting reduced stress and strain rate vectors
and redefining tensorial operations in such a way that the formulation of the
existing continuum models can be used without much modification. The
Hypoplastic Cam-clay and the explicitly formulated hypoplastic models are
adapted to model the interface behaviour. In addition to the reduced stress
and strain tensor formulations, we introduce an additional variable reducing
the strength and stiffness of the interfaces when compared to the strength
and stiffness of the soil. For verification, experiments in constant volume
and constant normal stress conditions have been simulated. A comparison
of the available experimental data from the literature and the simulations is
presented. It is shown that the new hypoplastic interface models can describe
a number of important phenomena of clay–structure interfaces.

1. Introduction

Various constitutive models for the contact between soils and structural elements have
been proposed in the past. The modelling of interfaces is important for the holistic
analysis of geo-structures, such as piles, anchors and retaining walls, where the natu-
ral bearing capacity is greatly influenced by the interface zone. The first experimental
evidence by Potyondy [1] investigated the effect of various construction materials with
different soils, e.g. clay and sands. This research was continued for granular materials
and clays, e.g. Tsubakihara et al. [2], Tsubakihara and Kishida [3], Littleton [4], Sun
et al. [5]. The experimental research describes the general behaviour of clay interfaces,
see [6, 7, 8, 9, 10, 11]. In addition to general interface behaviour, some of the literature
describes the rate effect of shearing [12, 13, 14] and the clay interface behaviour at low
confining pressures, e.g. [15, 16]. Following this experimental research, the modelling of
contact focused on granular–structural interfaces using the elasto-plastic Mohr–Coloumb
law, which yields the maximum frictional shear stress in relation to the normal stress. In
addition to the classical elasto-plastic models, other formulations have been proposed,
for example advanced elasto-plastic models [17, 18], damage models [19, 20], and general
plasticity models [21].
The development of interface models for fine-grained soils has evolved as a major devel-
opment in granular soils. Different models using the disturbed state concept have been
proposed explicitly for clay by [6, 22, 23]. Cheng et al. [24] proposed an extension to
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the hyperbolic interface model of Clough and Duncan [25], which neglects experimental
evidence such as softening behaviour at the interface. Furthermore, there are only a few
models formulated as 3-D interface models that can be used in finite element analysis
(e.g. Liu et al. [26]). Many of the existing formulations focus on 2-D interface modelling.
In addition to the classical elasto-plastic constitutive models, hypoplastic constitutive
models have proved to be well suited for modelling the mechanical behaviour of differ-
ent types of soils. The hypoplastic model proposed by von Wolffersdorf [27] is highly
suitable for modelling the 3-D constitutive behaviour of granular materials. This model
was reformulated by Gutjahr [28] as a 2-D interface model to simulate retaining wall
behaviour. It is based on developments by Herle and Nübel [29], who gave the first
hypoplastic granular interface description. These models were extended by Arnold and
Herle [30] to a 3-D interface model using a reduced stress and strain tensor, with its
underlying formulations from von Wolffersdorf [27]. A potential shortcoming of their
approach, which is advanced in this paper, is the consideration of equal normal stresses
in all directions in the interface models.
In this paper, we develop a constitutive interface model for fine-grained interfaces on the
basis of previous 3-D hypoplastic models. In Maš́ın [31], a clay hypoplastic model was
developed to predict the behaviour of fine-grained soils. The model was subsequently
extended to explicitly incorporate asymptotic stress states [32, 33, 34]. The models
outlined by Maš́ın in [32] and [33] have been adapted to model the behaviour of clay–
structure interfaces. The models are capable of modelling different surface roughnesses
at the structural surface, and they consider different normal stresses that act normally
to the interface plane and within the interface plane. The models have been validated
by means of constant volume and constant normal stress test simulations. Experimental
data from illitic clay [4], Kawasaki clay [3], and a Kaolin clay [5] is used to validate the
models.

Notation and conventions

‖X‖ =
√
X ·X represents the Euclidean norm of X. The mean effective stress is taken

as p = −trσσσ/3, where the sign convention is from classical continuum mechanics. The
stress deviator is represented by σσσ∗ = σσσ+1p and 1 denotes the second order unit tensor.

2. Hypoplastic description of clay–structure interfaces

[Figure 1 about here.]

The general form of the hypoplastic model formulation, Gudehus [35], can be written
as

σ̇̇σ̇σ = fs (LLL : ε̇̇ε̇ε+ fdNNN‖ε̇̇ε̇ε‖) (1)
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where σ̇̇σ̇σ and ε̇̇ε̇ε are the stress and strain rate tensors, respectively, NNN and LLL are the
second and fourth-order constitutive tensors, fs is the barotropy factor controlling the
influence of the mean stress, and fd is the pyknotropy factor controlling the influence of
the relative density. An alternative expression for the hypoplastic model of Maš́ın [32],
developed from the general form of the hypoplastic constitutive formulation in Eq. (1),
can be written as

σ̇̇σ̇σ = fsLLL : ε̇̇ε̇ε− fd
fAd
AAA : ddd‖ε̇̇ε̇ε‖ (2)

where fAd describes the value of fd at the asymptotic state boundary surface (ASBS)
and ddd is the asymptotic strain rate direction. Here, AAA is

AAA = fsLLL+
σσσ

λ∗
⊗ 111 (3)

where λ∗ is a model parameter. Eq. (2) enables the use and incorporation of any
appropriate arbitrary shape of the asymptotic shape boundary surface, by specifying the
dependence of fAd on the void and stress ratio [32]. Eq. (3) is used to further establish
the hypoplastic fine-grained interface models. The general underlying assumptions of
the strain and stress tensor, proposed by Arnold and Herle [30], are extended in the
following sections.

2.1. Interface stress and strain tensor

The novelty of this approach is the consideration of the in-plane stresses and strains.
Using the normal stress σp, σt and shear stresses τx and τy leads to an identical behaviour
of soils under simple shear conditions. Figure 1 illustrates the underlying assumption.
Instead of an isotropic stress state [30], a hydrostatic stress state is assumed. In addition,
the use of the extended version of the stress and strain vectors leads to the possibility
of using any 3-D constitutive model as an interface constitutive model. Under the
assumption of a contact plane, where the global axis z is equal to 1 and 2‖x and 3‖y
are shown in Figure 1, the stress tensor can be reduced to σt, σp, σ12 = τx, σ13 = τy.
Here σt is the transverse stress (normal to the interface), σp is the in-plane stress of the
interface, and τx and τy are the shear stress components. The stress tensor is written as

σσσf =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⇒
σt τx τy
τx σp 0
τy 0 σp

 (4)

where σσσf denotes the full stress tensor and the reduced vectorial form σσσ is

σσσ =


σt
σp
τx
τy

 (5)
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[Figure 2 about here.]

We will make a brief comment on the initialization of σp: At the beginning of each
simulation, which is presented in the following, the stress initialization is done using
σp = σt. After the initialization, the in-plane stress can be developed independently of
the normal stress σt. Simultaneously, the strain rate tensor ε̇εε is defined as

ε̇̇ε̇εf =

ε̇11 ε̇12 ε̇13
ε̇21 ε̇22 ε̇23
ε̇31 ε̇32 ε̇33

⇒
 ε̇t γ̇x

2
γ̇y
2

γ̇x
2 0 0
γ̇y
2 0 0

 (6)

where ε̇̇ε̇εf denotes the full strain rate tensor, ε̇t the normal strain rate, and
γ̇x
2

;
γ̇y
2

the

shear strain rates in the x and y directions. The reduced vectorial form ε̇̇ε̇ε is defined as

ε̇̇ε̇ε =


ε̇t
0
γ̇x
2
γ̇y
2

 (7)

Notice that the in-plane component of the strain rate tensor is always assumed to be
zero.

2.2. Shear zone thickness

As introduced by Gutjahr [28], the shear strain γi is connected to the interface displace-
ment ui by the shear zone thickness. This thickness ds for clay interfaces is analogous
to granular materials. Because of the relation between the soil type and the surface
roughness (Figure 2), γi can be written as

tan γi =
ui
ds

(8)

where ds is the shear zone thickness, which is influenced by the clay mineralogy and the
surface roughness. The experimental evidence of the shear zone thickness for clays was
studied by Lupini et al. [9] using a ring-shear test apparatus. Chen et al. [7] stated that
the shear zone thickness is 7− 8 times the mean diameter d50. However, the shear-band
thickness at the interface zone is difficult to examine. For this reason, ds can be obtained
from back calculations, as suggested by Arnold and Herle [30].

2.3. General definitions of some new operators

Our modelling approach was introduced in Stutz et al. [36]. By retaining the continuum
constitutive models, the redefined tensorial operators in combination with the reduced
stress Eq. (5) and strain rate vectors Eq. (7) are used to simulate the interface behaviour.
By employing this approach, the results coincide with the modelling of simple shear
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conditions using the full 3-D continuum models.
The Voigt notation is used to reduce the second order and fourth order tensors to vectors
and matrices. The first rank tensors XXX and YYY and the second rank tensor S are defined
as

XXX =


X1

X2

X3

X4

 YYY =


Y1
Y2
Y3
Y4

 S =


S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

 (9)

The Euclidean norm of XXX is then written as

‖XXX‖ =
√
X2

1 + 2X2
2 + 2X2

3 + 2X2
4 (10)

The trace of XXX is defined as
tr (XXX) = X1 + 2X2 (11)

The determinant of XXX is defined as

det (XXX) = 111 : XXX = X1X
2
2 −X2

4X2 −X2
3X2 (12)

The second-order unit tensor used in the vectorial notation is

111 =


1
1
0
0

 (13)

The fourth order unit tensor is

III =


1 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 (14)

The deviator XXX∗ is written as

XXX∗ = XXX + 111

(
−trXXX

3

)
=


2

3
X1 −

2

3
X2

X2

3
− X1

3
X3

X4

 (15)
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The normalized deviator X̂XX
∗

is defined in vectorial notation as

X̂XX
∗

=
XXX

trXXX
− 111

3
=



X1

X1 + 2X2
− 1

3
X2

X1 + 2X2
− 1

3
X3

X1 + 2X2
X4

X1 + 2X2


(16)

The inner product (·) is

XXX · YYY =


X1Y1 +X3Y3 +X4Y4

X2Y2 +X3Y3
X1Y3 +X3Y2
X4Y1 +X2Y4

 (17)

The double inner product (:) between the two first-rank tensors is defined as

XXX : YYY = X1Y1 + 2X2Y2 + 2X3Y3 + 2X4Y4 (18)

The double inner product (:) between second-rank and first-rank tensors is defined as

S : YYY =


S11Y1 + 2S12Y2 + 2S13Y3 + 2S14Y4
S21Y1 + 2S22Y2 + 2S23Y3 + 2S24Y4
S31Y1 + 2S32Y2 + 2S33Y3 + 2S34Y4
S41Y1 + 2S42Y2 + 2S43Y3 + 2S44Y4

 (19)

Furthermore, the outer product (⊗) is defined as

XXX ⊗ YYY =


X1Y1 X1Y2 X1Y3 X1Y4
X2Y1 X2Y2 X2Y3 X2Y4
X3Y1 X3Y2 X3Y3 X3Y4
X4Y1 X4Y2 X4Y3 X4Y4

 (20)

These definitions are used in the following sections, where only the standard tensorial no-
tation is given for the contact models. As an example, the reduced vectorial formulation
of the Hypoplastic Cam-clay model is given in Appendix A.

2.4. Hypoplastic Cam-clay interface model

The hypoplastic Cam-clay model [32] is introduced briefly. Using the reduced stress ten-
sor Eq. (5) and the reduced strain tensor Eq. (7) from the main model, the hypoplastic
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Cam-clay interface model (HCC) can be reformulated as

σ̇σσ = fsLLL : ε̇εε−
(
p

p∗e

)
M2 + η2

M2

(
fsLLL+

σσσ

λ∗
⊗ 111
)

: ddd‖ε̇εε‖ (21)

where M is the slope of the critical state line in the p–q plane.The stress ratio is η =
q

p

and the deviatoric invariant is defined as q =

√
3

2
‖σσσ∗‖. The LLL tensor, representing the

isotropic elasticity, is given by

LLL = III +
ν

1− 2ν
111⊗ 111 (22)

where ν controls the ratio between the shear and the bulk stiffnesses. The Hvorslev
equivalent pressure p∗e is defined as

p∗e = pr exp

[
N − ln(1 + e)

λ∗

]
(23)

where pr is the reference stress of 1 kPa, e is the void ratio, and N and λ∗ are model
parameters. The asymptotic strain rate direction ddd is assumed to be normal to the ASBS,
following the modified Cam-clay formulation. The asymptotic strain rate direction ddd can
thus be written as

ddd =
3σσσ∗ − 111p

M2 − η2

3

‖3σσσ∗ − 111p
M2 − η2

3
‖

(24)

The barotropy factor fs is calculated using

fs =
3p

2

(
1

λ∗
+

1

κ∗

)
1− 2ν

1 + ν
(25)

We make use of the reduced stress Eq. (5) and strain vectors Eq. (7) in combination
with the above reduced new tensor operators (Section 2.3) to define the hypoplastic
Cam-clay model as given in the Appendix A. The hypoplastic Cam-clay model uses the
same parameters as the modified Cam-clay model, where the slope of the critical state
line M is calculated using the critical state friction angle:

M =
6 sinφc

3− sinφc
(26)

The parameter λ∗ is the slope of the isotropic normal compression line in ln(1+e) versus
ln(p) and κ∗ controls the unloading line in the same plane, N is the value of ln(1 + e)
at the isotropic normal compression line for p = pr = 1 kPa, and ν controls the shear
stiffness. In addition, the void ratio e and σσσ are used as state variables.
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2.5. Clay hypoplasticity interface model with advanced asymptotic state
boundary surface

Based on the clay hypoplasticity model given in [31] with explicitly defined asymptotic
states [33], the corresponding interface model is derived by using the reduced stress and
strain tensors, as shown in Eq. (5) and Eq. (7). The model uses the general formulation
of hypoplasticity with explicitly defined asymptotic states in Eq. (2). There are some
differences from the hypoplastic Cam-clay model in [32], which are presented below. The
constitutive tensors LLL, fs and AAA are the same as those in the model presented in Section
2.4, and fd is proposed in [33] as

fd =

(
2p

pe

)αf

(27)

The exponent αf controls the irreversible deformation inside the ASBS. In [34], Maš́ın
suggests the use of αf from [31], which leads to a better prediction of the model response.
Additionally, αf can be treated as an independent parameter [31] to control the non-
linear response inside the ASBS.

αf =

ln

(
λ∗ − κ∗

λ∗ + κ∗

(
3 + a2f

af
√

3

))
ln (2)

(28)

where af is

af =

√
3 (3− sinφc)

2
√

2 sinφc
(29)

The factor fAd is the limiting value of fd at the ASBS, i.e.

fAd = 2αf (1− Fm)αf/ω (30)

The Matsuoka–Nakai factor Fm [37] is calculated by

Fm =
9I3 + I1I2
I3 + I1I2

(31)

using the following invariants:

I1 = trσσσ I2 =
1

2

[
σσσ : σσσ − (I1)

2
]

I3 = detσσσ (32)

ω = −
ln
(
cos2 φc

)
ln (2)

+ af
(
Fm − sin2 φc

)
(33)

with the Lode angle θ,

cos 3θ = −
√

6
tr (σ̂̂σ̂σ∗ · σ̂̂σ̂σ∗ · σ̂̂σ̂σ∗)

[σ̂̂σ̂σ∗ : σ̂̂σ̂σ∗]3/2
(34)
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The asymptotic strain rate direction ddd is given by

ddd =
dddA

‖dddA‖
(35)

where dddA is

dddA = −σ̂̂σ̂σ∗ + 111

[
2

3
− 1

4
F 1/4
m

]
F
ξ/2
m − sinξ φc

1− sinξ φc
(36)

The factor ξ controls the ratio of the volumetric strain to the shear strain: this factor
was obtained using an optimisation procedure to ensure that the strain rate direction
satisfies approximately the Jaky formula [38]:

ξ = 1.7 + 3.9 sin2 φc (37)

The combination of all components of the clay hypoplastic model with explicitly defined
asymptotic states (see Eq. (2)) leads to the interface model (HCE) using the newly
defined tensor operators given in Section 2.3.
The model requires 5 parameters: φc the critical state friction angle, λ∗, κ∗, N and ν
(see Section 2.4).
Note that in finite element codes, the models for interfaces are typically implemented
with the primary state variables, the stress and strain rate normal to the interface (σt,
ε̇p), and shear components (τx,τy,γ̇x,γ̇y). To incorporate the in-plane stress into the
formulation, σp must be considered as an additional state variable along with the void
ratio e.

2.6. Extension by surface roughness

One of the key factors for modelling the soil–structure interface is the roughness, as shown
in [1], [4], and [5]. The approach suggested by [30] is used to incorporate the surface
roughness into the HCC and HCE models, where κr is the friction coefficient, which can
be calculated depending on the surface traction profile of the structural element that is
in contact with the surrounding soil. If the surface condition is not completely rough,
the frictional coefficient φinterface ≤ φc, and the value of κr is

κr =
φinterface

φc
(38)

The introduction of κr into the HCC model is done by modification of the parameter M
for the critical state line:

M =
6 sin (φcκr)

3− sin (φcκr)
(39)

Additionally, Arnold and Herle [30] suggested a reduction of the barotropy factor fs of
the hypoplastic model to decrease the predicted soil stiffness. This modifies the model
response both in compression and in shear. In our model, we assume that it is more
realistic to reduce the response in shear only. We adopt the formulation originally
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proposed in [39], and later adopted in Maš́ın [31]. The shear stiffness is governed by the
variable r. In clay hypoplasticity, the value of r is equal to (see Maš́ın [33])

r =
4

3

κ∗

λ∗ + κ∗
1 + ν

1− 2ν
(40)

The value of r for the reduced shear stiffness (denoted by rr) is

rr =
4/κr

3

κ∗

λ∗ + κ∗
1 + ν

1− 2ν
(41)

and the value of νr used in the modified model in place of ν is

νr =
3rr (λ∗ + κ∗)− 4κ∗

6rr (λ∗ + κ∗) + 4κ∗
(42)

In the HCE model, the same equations are adopted for the implementation of the struc-
tural surface roughness. In addition, af is modified:

af =

√
3 (3− sinφcκr)

2
√

2 sinφcκr
(43)

ω, adopted for the surface roughness extension, is

ω = −
ln
(
cos2 φcκr

)
ln (2)

+ af
(
Fm − sin2 φcκr

)
(44)

and dddA, used for the calculation of the asymptotic strain rate direction, becomes

dddA = −σ̂̂σ̂σ∗ + 111

[
2

3
− 1

4
F 1/4
m

]
F
ξ/2
m − sinξ φcκr

1− sinξ φcκr
(45)

3. General model behaviour

The two different hypoplastic fine-grained interface models are used both for constant
volume (undrained) and constant normal stress boundary conditions simulations. The
parameters for the calculations are given in Table 1. These are artificial parameters used
by Maš́ın in [32, 33]. The HCC model uses the parameter M calculated from Eq. (39)

[Table 1 about here.]

for mutual comparability. K is introduced as

K = σ̇t/ε̇t (46)

Typically, experiments are described as follows [40].

� Constant Volume (CV):
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K =∞; σ̇t 6= 0; ε̇t = 0, see Section 3.1

� Constant Normal Stress (CNL):
K = 0; σ̇t = 0; ε̇t 6= 0, see Section 3.2

[Figure 3 about here.]

3.1. Constant volume calculations

[Figure 4 about here.]

The parameters from Table 1 were used for the calculation of the interface models un-
der CV-conditions. The CV-test conditions, compared to conventional 3-D soil testing
conditions (triaxial testing), often refer to undrained behaviour (ε̇t = 0) of the interface.
In addition, ε̇t = 0 implies a constant void ratio ė = 0.
The simulations were done under two different normal stress conditions (100 and 300

[Figure 5 about here.]

kPa). Figure 4 shows the shear stress τx vs shear strain γx results, Figure 5 shows the
normal stress σt vs shear strain γx results, and Figure 6 shows the normal stress σt vs
shear strain τx path of the interface. Clearly, the HCE model predicts lower final shear
stresses than the HCC model, although both models were calibrated to have the same
critical state friction angle. The reason for this difference is the more advanced shape of
the ASBS of the HCE model with a Matsuoka–Nakai deviatoric cross-section. The HCE
model predicts lower critical state stress ratios because the Lode angles in the shear tests
are different from the Lode angles associated with triaxial compression tests.
In general the observed behaviour is typically associated with undrained (constant vol-
ume) conditions, as shown in the results of experimental research presented in Tsubak-
ihara and Kishida [3] and Sun et al. [5].

[Figure 6 about here.]

3.2. Constant normal stress calculations

[Figure 7 about here.]

The next section deals with simple shear conditions. From Figure 1, it can be seen
that the shear conditions are the same as the simple shear conditions in a soil continuum.
This test condition is highlighted as constant normal stress (σ̇t = 0) and a change in
normal deformation to the interface (ε̇t 6= 0). The results of these calculations are shown
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in Figures 7 and 8.
Figure 7 shows the shear deformation γx vs shear stress τx behaviour. It can be seen that
both models have the same trend but differ in the residual shear stress: both models
have a similar stress path at small shear deformations.
A similar behaviour can be observed in Figure 8. At higher pressures (300 [kPa]), the

[Figure 8 about here.]

behaviour of the normal strain ε̇t vs the shear strain γx tends to be identical; however,
the models behave differently from each other at lower pressures (100 kPa). The normal
strain rate in the HCE model is higher than with the HCC model.
Figure 9 presents the effect of the applied initial normal stress condition. The approach
proposed by Stutz et al. [36], which is used in this paper, is compared to the approach
proposed by Arnold and Herle [30]. In addition, an initial stress condition is used by
assuming K0 = 0.5. The results show that the use of an isotropic stress condition [30]
leads to a smaller peak stress than the hydrostatic stress assumption [36], while using
an initial applied stress of σp = K0 ∗ σ0 leads to a softer model response. Considering
a simple shear simulation, as shown in Figure 3, the assumption of initial hydrostatic
stress conditions leads to the same results as the full 3-D constitutive hypoplastic model.

[Figure 9 about here.]

3.3. Simulations using the surface roughness extension

[Figure 10 about here.]

In Section 2.6, the explicit modelling of the surface roughness was introduced. This
development is studied in the following. Here, κr ≤ 1 should tend to a soft response at the
interface rather than using the full rough conditions with κr = 1.0. The surface roughness
extension for both models has been examined using different κr and the parameters from
Table 1.
The three different κr values used are 1.0, 0.75 and 0.5; the results for the τx vs γx
simulations are shown in Figure 10. In both models, there is a softer response for
κr < 1.0. The surface extensions for the HCC and HCE models are able to incorporate
the effect of the surface roughness, as expected.

4. Model validation using experimental data

[Table 2 about here.]

In this section, the ability to model different clay interfaces is shown for the Hypoplas-
tic Cam-clay (HCC) and extended Hypoplastic (HCE) models. The experimental data
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from Littleton [4] and Tsubakihara et al. [2, 3] is used to validate the HCC and HCE
models under constant normal load. In addition, newer data available from Sun et al.
[5] was used for the comparison of experimental to simulation results under constant
volume conditions.
The parameters used are given in Table 2 while the properties of the clays are sum-
marized in Table 3: only the common physical properties are given, which are readily
available in the literature and described in the papers cited. For the clays used in this

[Table 3 about here.]

section, the hypoplastic parameters were not available. Therefore the parameters used
for the verification were estimated by a simple trial and error procedure. In order to
make a reasonable comparison between the HCE and HCC models, the parameters used
in the calculations must be the same. Those used in Sections 4.1 and 4.3 are the same.
However, in Section 4.2, different parameters were used, to demonstrate the capabilities
of the models.

4.1. Simulations of the experimental data from Littleton [4]

Littleton [4] conducted tests on two different clays, using a modified direct shear test.
The lower part of the box was replaced by a solid mild steel block. The average roughness
was 0.18 µm in the centre line of the block, with a cut-off length of 0.84 mm. The shear
box was used in both a modified and a conventional manner, to find the internal (soil–
soil) and external (soil–solid) frictional shear strengths [4]. The two materials used
by Littleton [4] were Kaolin clay and an illitic clay. The results from the illitic clay

[Figure 11 about here.]

were used for the verification. The illitic clay was mixed to a moisture content of 90%.
The clay was consolidated under a gradually increasing load, to ensure that 95% of the
consolidation had taken place. The properties of the clay are given in Table 3. The
parameters used for the verification are given in Table 2. The vertical load of the test
was 626 N. The behaviour of the illitic clay and the solid mild steel block shows the
typical behaviour of clay interfaces, with a higher peak at smaller displacements and
lower residual shear strength at larger displacements compared to soil–soil direct shear
tests. Figure 11 shows the result in a tangential displacement ux vs shear stress τx graph.
The experimental behaviour was simulated using both the HCC and HCE models in a
quantitative manner, with the HCC model showing a higher peak shear stress than the
HCE model. The reason for this unexpected behaviour is the use of one parameter
set for both models: we had anticipated that one hypoplastic parameter set would be
satisfactory to validate both models, but clearly the simulations using the HCC model
can be improved by using a different set of parameters.
In summary, both the HCC and HCE models were, after a calibration, able to simulate
the interface behaviour of illitic clay.
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4.2. Simulations of the experimental data from Kawasaki clay [2, 3]

[Figure 12 about here.]

Tsubakihara and Kishida [2] used both simple and direct shear devices for constant
normal stress tests of Kawasaki clay to study the effect of surface roughness and the
different test devices to determine how they influenced the interface frictional behaviour.
The soils used were reconstituted Kawasaki marine clay (S0) and Kawasaki marine clay
mixed with Toyoura sand (S4) (see Table 3). The samples were consolidated at 294.4
kPa, respectively, 98 kPa. After the application of a vertical consolidation pressure, the
stress was held constant during the test (constant normal stress condition).
Low-carbon steel was used as the construction material in the apparatus and the surface
roughness was investigated and measured. The experimental data used as comparison
for the HCE and HCC models was from the simple shear testing device under constant
pressure (CNL conditions) [3].
In the following, we used different parameters sets in the HCE and HCC models to
demonstrate the simulation capability. The different model parameter sets are given
in Table 3. The roughness coefficients used in both models are κr = 1.0 for 10µm
and κr = 0.95 for 3µm at a constant normal load of 294 kPa. For the calculation at a
constant normal load of 98 kPa, κr is taken to be 0.85. Figure 12 shows the results, for the

[Figure 13 about here.]

verification data using the Kawasaki clay (S0), in the form of a shear strain γx vs shear
stress τx diagram for the HCE model. There is a good match between the experimental
data and the simulation results for all normal loads and different roughness values. The
results of the HCC model, illustrated in Figure 13, show the same results, although the
simulations show a over-prediction compared to the experimental data. Both the HCC
and HCE models are able to reproduce the behaviour of the experimental data reported
by [2, 3].
Both models were used to simulate the experimental results for a mixture of Kawasaki
clay and Toyoura sand (S4): these results are shown in Figure 14. The applied constant
load in this test by Tsubakihara et al. [2] was 294 kPa. As already mentioned, the HCC
and HCE models can simulate the experimental result with good agreement.

[Figure 14 about here.]

4.3. Clay-Interface undrained shear tests from [5]

Sun et al. [5] conducted tests using a modified direct shear apparatus under constant
volume conditions with different mixtures of clay and sand, and varying the roughness
of the steel plates. The data for pure Kaolin clay is used for verification. This clay was
tested under normally consolidated conditions at a consolidation pressure of 98 kPa and
low-carbon steel was used as the structural surface.
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The effect of the consolidation ratio, surface roughness, and shearing rate, was recorded
by Sun et al. [5]. The consolidation pressure was 400 kPa in the experimental data and
the shearing rate 1 mm/min. This shearing rate is the lowest applied by Sun et al. [5].

Figure 15 gives the result as a plot of the shear displacement ux vs the shear stress

[Figure 15 about here.]

τx. There is no good agreement between the simulation and experimental results for
the peak stress. In addition, the general stress paths differ at higher deformations.
Nevertheless, both the HCE and HCC models can be used to model the behaviour from
constant volume test conditions at interfaces, as demonstrated in Section 3.1.

5. Concluding remarks

In this paper, we have used a general approach [36] to convert existing continuum soil
models into interface models. In this approach, reduced stress and strain rate vectors
and re-defined tensorial operations are adopted in order to use the formulation of the
existing continuum models without significant modification. Based on this approach,
we have proposed interface versions of two clay hypoplastic models: the hypoplastic
Cam-clay model and the more advanced clay hypoplastic model with an explicit state
boundary surface formulation. In addition to the reduced stress and strain vector for-
mulation, a parameter is introduced that decreases the interface strength and interface
shear stiffness when compared to the corresponding continuum model, so as to account
for the surface roughness at the interface.
In the second part of the paper, the general response of each model was shown and
the differences between the predictions obtained using the two models were discussed.
Finally, the models were evaluated with respect to the existing experimental data. This
evaluation was limited, due to the scant experimental database available in the litera-
ture. Additional evaluation is planned for future work.
The modelling of an interface by applying 3-D constitutive models was achieved by using
3-D constitutive soil models. This is in accordance with Arnold [41], who highlighted the
fact that interface behaviour is similar to soil behaviour. On the other hand, using the
approach of Weißenfels and Wriggers [42, 43], the models reformulated in this paper can
be implemented in standard finite element simulations. The proposed constitutive inter-
face models can be used in zero-thickness interface elements [44, 45] or mortar methods,
e.g. [46].
Lastly, there are further possibilities for using the modified tensorial notation: with
some modifications for the surface roughness, this method can be applied to various
constitutive models. For example, the hypoplastic model by Von Wolffersdorff [27] is
used by Stutz et al. [36] for modelling interface behaviour. This scheme can used for
elasto-plastic models as well as for hypoplastic models. The main thing is to modify the
surface roughness approach.
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A. Vectorial notation of the hypoplastic Cam-clay interface
model

The definition proposed in Section 2.3 is used to derive the hypoplastic Cam-clay model
(HCC) in a reduced notation. All the compoments of the model that have to be changed
according to the newly defined operators are given in the following. The LLL matrix for
the contact description is

LLL =



1 +
ν

1− 2ν

ν

1− 2ν
0 0

ν

1− 2ν

1

2

ν

1− 2ν
0 0

0 0
1

2
0

0 0 0
1

2


(47)

where the stress invariant p is

p = −σt + 2σp
3

(48)

The deviatoric stress tensor can be written in vectorial notation:

σσσ∗ =


2

3
σt −

2

3
σp

σp
3
− σt

3
τx
τy

 (49)
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The invariant q is

q =

√
3

2

√(
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The asymptotic strain rate direction is

ddd =

3
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(51)

For the definition of the hypoplastic Cam-clay interface model (see Eq. (3)) in vectorial

notation, the term
σσσ

λ∗
⊗ 111 is defined by

σσσ

λ∗
⊗ 111 =


σt σt 0 0
σp σp 0 0
τx τx 0 0
τy τy 0 0


λ∗

(52)

The combination of all parts of the model then gives the hypoplastic Cam-clay model
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as defined in (Eq. (21)):
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(53)
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Table 1: Parameters for the evaluation of HCC and HCE interface models

Parameters Hypoplastic
Cam-clay
(HCC)

explicit Hypo-
plastic clay
model (HCE)

λ∗ 0.1 0.1
κ∗ 0.01 0.01
ν 0.2 0.2
M/φc 0.98 25
N 1.0 1.0
κr 1.0 1.0

Table 2: Parameters of the hypoplastic interface models used in the simulations

Soils λ∗ κ∗ ν φc N κr

Illitic clay [4] 0.06 0.04 0.45 20 0.8 0.79
Kawasaki clay S0 (HCE) [2] 0.09 0.05 0.3 24 1.11 1.0 / 0.95 / 0.85
Kawasaki clay S0 (HCC) [2] 0.086 0.02 0.3 24 0.82 1.0 / 0.95 / 0.85
Kawasaki clay S4 (HCE) [2] 0.1 0.078 0.2 27 1.19 1.0
Kawasaki clay S4 (HCC) [2] 0.058 0.005 0.25 27 0.88 1.0

Kaolin clay [5] 0.11 0.02 0.2 22.5 1.03 0.75

Table 3: Properties of the different clays

Properties Illitic
clay [4]

Kawasaki
clay [3]

Kaolin
clay [5]

Plastic limit
[%]

30.0 48.1 40.3

Liquid Limit
[%]

83.0 86.0 75.3

Density ρs
[g/m3]

2.61 2.65 2.70
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