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Abstract

Hypoplasticity has been shown to be a promising approach to constitutive modelling of
geomaterials. An extensive research at universities in Karlsruhe and Grenoble led to the
development of comprehensive constitutive models for granular materials. Much less effort,
however, was put into the research on hypoplastic models for fine-grained soils. A new
hypoplastic model suitable for description of clay behaviour is proposed in this dissertation.

The primary task was to develop a model suitable for practical applications – it should
require minimum number of parameters, which can be evaluated using standard laboratory
procedures. The proposed model requires only five parameters, equivalent to the parame-
ters of the well-established Modified Cam clay model. In principle, only two experiments
are required for their evaluation – an isotropic loading and unloading test and a triaxial
shear test. Void ratio is considered as a state variable and therefore, at least theoretically,
a single set of material parameters may be used to predict the behaviour of soils with
different degrees of overconsolidation.

Tensorial analysis of the proposed model reveals that it predicts the state boundary surface,
which is a natural ingredient of elasto-plastic models, but only a consequence of the mathe-
matical formulation of hypoplastic models. A possibility to derive an analytical expression
of the state boundary surface is important for further developments of the model.

The thesis further brings an extensive evaluation of the proposed model. Two main as-
pects are studied – predictions of the response to experiments with stress paths pointing
in different directions in the stress space and predictions of the behaviour of soils with
different degrees of overconsolidation. The proposed model was in both cases compared
with different advanced constitutive models, both elasto-plastic and hypoplastic. Although
quantitative comparison of the quality of different models is a relatively complex task, pre-
dictions by the proposed model were always at least comparable to predictions by the other
advanced models tested.

Finally, a possibility for further development of the model is demonstrated by means of
incorporating the effects of structure in natural clays. An additional state variable – sensi-
tivity – is a measure of the ratio of sizes of the state boundary surfaces of the reconstituted
and natural soil. A suitable evolution equation of it allows us to predict progressive changes
in structure caused by degradation of cementation bonds.
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Chapter 1

Introduction

Theory of hypoplasticity is a relatively recent approach to constitutive modelling of geoma-
terials, developed independently during the last two decades at universities in Karlsruhe
(e.g., [77]) and Grenoble [26, 29]. Initially, the research of both the schools focused on
the development of constitutive models for granular materials, the progress of hypoplastic
models suitable for description of fine-grained soils has been delayed until recent years.

The hypoplastic models for fine-grained soils available when the present research started
[105, 106, 61, 54] suffered from several shortcomings outlined in Chapter 2. The first aim of
the present work was to develop a hypoplastic constitutive model for fine-grained soils that
would be applicable in geotechnical practice, i.e. it should predict the behaviour of fine-
grained soils with reasonable accuracy while requiring only minimum number of material
parameters. A further task was a study of some mathematical properties of the proposed
model and its thorough evaluation with respect to experimental data. Finally, a possibility
to extend the basic formulation to describe the behaviour of materials with more complex
structure was studied.

The thesis consists of six main chapters, which are formed by research articles that appeared
in different international journals and in conference proceedings.

The development of the new constitutive model is described step-by-step in Chapter 2. The
reference constitutive model by Herle and Kolymbas [61] is modified taking into account
principles set by Niemunis [106]. An evaluation of the proposed constitutive model with
respect to experimental data on London clay [86, 98, 126] is also presented (more detailed
evaluation is given in Chapters 4 and 5). Chapter 2 was published as a research article in
the International Journal for Numerical and Analytical Methods in Geomechanics [87].

Some consequences of the mathematical structure of the new model are studied in Chap-
ter 3. Tensorial analysis reveals that the model predicts existence of the so-called state
boundary surface, defined as a boundary of all admissible states in the stress-void ratio
space. Conclusions from Chapter 3 are important not only from the theoretical point of
view, but also for further development of the model (as demonstrated, e.g., in Chapter 6).
Chapter 3, written by D. Maš́ın and I. Herle, was published in Computers and Geotechnics
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[97], a similar topic (together with the analysis of the hypoplastic model by von Wolffers-
dorff [141]) was discussed by the same authors in Reference [96].

Chapter 4 presents an evaluation of predictive capabilities of the proposed model in com-
parison with different advanced constitutive models, both elasto-plastic and hypoplastic.
D. Maš́ın, C. Tamagnini, G. Viggiani and D. Costanzo studied directional response of the
models (response to probes in different directions in the stress space from a common initial
state) and compared them with experimental results by Costanzo et al. [31]. Chapter 4 was
published in the International Journal for Numerical and Analytical Methods in Geome-
chanics [99], some selected results, together with description of the experimental evidence,
can be found in Reference [130].

Further evaluation of the proposed model and comparison of its predictions with different
models is presented in Chapter 5 (V. Hájek and D. Maš́ın, proceedings of the 6th European
Conference on Numerical Methods in Geomechanics [56]). Laboratory experiments (Hattab
and Hicher [58]) were in this case characterised by identical stress paths directions (p’ con-
stant tests), but started at different overconsolidation ratios. A range of overconsolidation
ratios for which a single set of material parameters can be used was studied.

Chapter 6 presents further development of the proposed model. Conclusions from Chapter 3
and an existing framework for the mechanical behaviour of structured clays [34] are used
to enhance the basic hypoplastic model by additional state variable, sensitivity. A suitable
evolution equation for sensitivity then allows us to predict the behaviour of clays with meta-
stable structure. Chapter 6 has been accepted for publication in Canadian Geotechnical
Journal [88].

Predictions by the enhanced hypoplastic model are compared with its elasto-plastic ’equiv-
alent’ (from the point of view of required material parameters) in Chapter 7. Advantage
of the non-linear hypoplastic formulation is revealed. Chapter 7 is about to be published
in proceedings of the International Workshop on Constitutive Modelling - Development,
Implementation, Evaluation, and Application [90].

The last two chapters present a summary of the research and an outlook, where the pos-
sibilities for further developments within hypoplastic framework are discussed.
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Chapter 2

A hypoplastic constitutive model
for clays

2.1 Introduction

In the past years many constitutive models based on the theory of hypoplasticity [77] have
been developed for granular materials. This research, traced in Sec. 2.2.1, has led to
constitutive equations that can take into account the nonlinearity of the soil behaviour,
the influence of barotropy and pyknotropy and also the behaviour at small to very small
strains with the influence of the recent history of deformation [108].

The research into hypoplasticity, based at the University of Karlsruhe, was mainly focused
on the development of constitutive models for granular materials, such as sands or gravels.
An important example is the model by von Wolffersdorff [141] (referred to in the following
text “VW model”), which can be considered as a synthesis of the research work carried
out in Karlsruhe1 on this subject. Only a few attempts however have been made to apply
hypoplastic principles to fine grained soils. A notable example are the visco–hypoplastic
models by Niemunis [105, 109, 106]. These models assume logarithmic compression law [18]
and, in line with the critical state soil mechanics [122], the lower limit for the void ratio e
is equal to 0. Their formulation however concentrates on prediction of viscous effects and,
since they arise from the model by von Wolffersdorff [141], it is not possible to specify the
shear stiffness independently of the bulk stiffness and, as discussed by Herle and Kolymbas
[61], the shear stiffness is significantly underpredicted.

A modification of the VW model, which allows for an independent calibration of the shear
and bulk stiffnesses, was proposed by Herle and Kolymbas [61] (referred to in the following
as the “HK model”). In the HK model, Herle and Kolymbas modified the hypoelastic
tensor L (Sec. 2.2.1), which was responsible for the too low shear stiffness predicted by the
VW model for soils with low friction angles, and introduced an additional model parameter

1There is also the second school of thought in the research on incrementally nonlinear models, Grenoble
(e.g., [29]). This article however focuses on the developments of the German school.
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r controlling the ratio of shear and bulk moduli. This model however assumes the influence
of the barotropy and pyknotropy identical to the VW model, which is not suitable for clays.
Moreover, the modification of the tensor L must vanish as the stress approaches the limit
state, which leads to incorrect predictions of the shear stiffness for anisotropic stress states
(for further discussion see Sec. 2.3). The lack of a suitable hypoplastic formulation for fine
grained soils led to the development of the model proposed in this paper.

In the following, the usual sign convention of solid mechanics (compression negative) is
adopted throughout, except Roscoe’s variables p, q, ǫv and ǫs (e.g. [104]), which are
defined positive in compression. In line with the Terzaghi principle of effective stress, all
stresses are effective stresses. Second–order tensors are denoted with bold letters (e.g.,
T, m) and fourth–order tensors with calligraphic bold letters (e.g., L). Different types of
tensorial multiplication are used: T ⊗ D = TijDkl, T : D = TijDij , L : D = LijklDkl,
T · D = TijDjk. The quantity ‖X‖ =

√
X : X denotes the Euclidean norm of X, the

operator arrow is defined as ~X = X/‖X‖ and trace by trX = X : 1. 1 is a second–order
unity tensor and I is a fourth order unity tensor with components Iijkl = 1

2 (1ik1jl + 1il1jk).

2.2 Hypoplasticity

2.2.1 General aspects

The hypoplastic constitutive equations are usually described by a simple non–linear tenso-
rial equation that relates the objective (Jaumann) stress rate T̊ with the Euler’s stretching
tensor D.

The early hypoplastic models were developed by trial and error, by choosing suitable
candidate functions (Kolymbas [75]) from the most general form of isotropic tensor–valued
functions of two tensorial arguments (representation theorem due to Wang [142]). The
suitable candidate functions were combined automatically using a computer program that
tested the capability of the constitutive model to predict the most important aspects of the
soil behaviour [76]. The research led to a practically useful equation with four parameters
proposed by Wu [149] and Wu and Bauer [151].

As proven in [80], the hypoplastic equation may be written in its general form as

T̊ = L : D + N‖D‖, (2.1)

where L and N are fourth and second–order constitutive tensors respectively that are
functions of the Cauchy stress T only in the case of early hypoplastic models.

An important step forward in developing the hypoplastic model was the implementation
of the critical state concept. Gudehus [53] proposed a modification of Eq. (2.1) to include
the influence of the stress level (barotropy) and the influence of density (pyknotropy). The
modified equation reads

T̊ = fsL : D + fsfdN‖D‖. (2.2)
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Here fs and fd are scalar factors expressing the influence of barotropy and pyknotropy.
The model [53] was later refined by von Wolffersdorff [141] to incorporate Matsuoka–Nakai
critical state stress condition.

A successful modification of the VW model is not straightforward due to the fact that the
constitutive tensors L and N are interrelated – they act together as a hypoplastic flow
rule and limit stress condition. To overcome this problem, it is convenient to introduce the
tensorial function

B = L
−1 : N, (2.3)

which has been already used in the development of both Karlsruhe hypoplastic models [76]
and CLoE hypoplastic models [29]. The Eq. (2.2) may be re–written,

T̊ = fsL : (D + fdB‖D‖) . (2.4)

The critical state condition can be found by substituting T̊ = 0 and fd = 1 into (2.4). It
follows that T̊ = 0 is satisfied trivially by D = 0 and for D 6= 0 by

~D = −B. (2.5)

Eq. (2.5) imposes a condition on stress, which can be revealed by elimination of ~D from
(2.5). Taking the norm of both sides of (2.5) we obtain for the critical state

f = ‖B‖ − 1 = 0. (2.6)

The stress function f may be seen as a counterpart of the critical state stress criterion in
elasto–plasticity [75]. A hypoplastic flow rule is then given by Eq. (2.5).

Using these transformations, Niemunis [106] proposed a simple rearrangement of the basic
hypoplastic equation (2.2), which allows definition of the flow rule, critical state stress con-
dition and tensor L independently. Such a rearrangement is useful for model development
and will also be used in this work.

The second–order tensor N is now calculated by

N = L :

(

−Y m

‖m‖

)

. (2.7)

Here the scalar quantity Y = f + 1 (named the degree of nonlinearity [106]) stands for a
limit stress condition, m is a second–order tensor denoted hypoplastic flow rule and L is
a fourth–order hypoelastic tensor from Eq. (2.2).

Eqs. (2.2) and (2.7) can be combined to get

T̊ = fsL :

(

D− fdY
m

‖m‖‖D‖
)

. (2.8)

Eqs. (2.2) and (2.7), or Eq. (2.8), define the general stress–strain relationship of the model
proposed. Following [106], this formulation is named “generalised hypoplasticity”.
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2.2.2 Reference constitutive model

The HK model, introduced in Sec. 2.1, is taken as a reference model for the present research
and its mathematical formulation is summarised in Appendix A. The tensor L of the VW
model is modified by introducing two scalar factors c1 and c2,

L =
1

T̂ : T̂

(

c1F
2
I + c2a

2T̂ ⊗ T̂
)

, (2.9)

where quantities T̂, F and a are defined in Appendix A. The expression for the factor c1 is
derived in order to ensure that the additional model parameter r specifies the ratio of the
bulk and shear moduli at isotropic stress state (details are given in Sec. 2.4.6) and factor
c2 follows from the requirement that the isotropic formulations of both the HK and VW
models merge,

c1 =

(

1 + 1
3a

2 − 1√
3
a

1.5r

)ξ

, c2 = 1 + (1 − c1)
3

a2
. (2.10)

Because the HK model does not make use of the generalised hypoplasticity formulation (Sec.
2.2.1), the influence of fators c1 and c2 must vanish as the stress approaches Matsuoka–
Nakai critical state stress criterion. For this reason, a scalar factor ξ is introduced in the
formulation of the factor c1 (Eq. (2.10)), which reads

ξ =

〈

sinϕc − sinϕmob
sinϕc

〉

, where sinϕmob =
T1 − T3

T1 + T3
. (2.11)

T1 and T3 are the maximal and minimal principal stresses, ϕmob is a mobilized friction
angle and 〈〉 are Macauley brackets: 〈x〉 = (x+ |x|)/2.

2.2.3 Intergranular strain concept

The hypoplastic models discussed in previous sections are capable of predicting the soil
behavior upon monotonic loading at medium to large strain levels. In order to prevent
excessive ratcheting upon cyclic loading and to improve model performance in the small–
strain range, the mathematical formulation has been enhanced by the intergranular strain
concept [108].

The rate formulation of the enhanced model is given by

T̊ = M : D, (2.12)

where M is the fourth–order tangent stiffness tensor of the material. The formulation
introduces the additional state variable δ, which is a symmetric second order tensor called
intergranular strain.

In the formulation described above, the total strain can be thought of as the sum of a
component related to the deformation of interface layers at integranular contacts, quantified
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by δ, and a component related to the rearrangement of the soil skeleton. For reverse
loading conditions (δ̂ : D < 0, where δ̂ is defined in Appendix B) and neutral loading
conditions (δ̂ : D = 0), the observed overall strain is related only to the deformation of the
intergranular interface layer and the soil behaviour is hypoelastic, whereas in continuous
loading conditions (δ̂ : D > 0) the observed overall response is also affected by particle
rearrangement in the soil skeleton. From the mathematical standpoint, the response of the
model is determined by interpolating between the following three special cases:

T̊ = mRfsL : D, for δ̂ : D = −1 and δ = 0;

T̊ = mT fsL : D, for δ̂ : D = 0;

T̊ = fsL : D + fsfdN‖D‖, for δ̂ : D = 1.

(2.13)

Full details of the mathematical structure of the model are provided in Appendix B. The
model, which incorporates the intergranular strain concept is in the paper denoted as
“enhanced”, the model without this modification as “basic”.

2.3 Limitations of the reference model

As pointed out in the introduction, although the HK model improved predictions of the clay
behaviour significantly, several shortcomings may still be identified. The most important
are:

• Measurements of the shear stiffness at very small strains (G0), by means of prop-
agation of shear waves, allows investigation of the dependence of G0 on the stress
level. For clays such studies were performed for example in [139, 69, 135, 22]. It was
shown that for stresses inside the limit state surface G0 depends on the mean stress
p but the influence of the deviatoric stress q is not significant (both for triaxial com-
pression and extension). The HK model with intergranular strains however predicts
significant decrease of the hypoelastic shear modulus G0 with the ratio η = q/p, as
discussed in Sec. 2.5 (Figs. 2.3 and 2.4).

• The HK model assumes a non–zero, pressure–dependent lower limit of void ratio,
ed. While this approach is suitable for granular materials, for clays it is reasonable
to consider the lower limit of void ratio of e = 0, according to the critical state
soil mechanics [122], supported by experimental studies on the shape of the state
boundary surface of fine–grained soils (e.g., [32, 33, 34]). Taking the pyknotropy
factor fd a function of relative density re calculated by

re =
e− ed
ec − ed

, (2.14)

with ec being void ratio at the critical state line at current mean stress, leads to
incorrect predictions of the stress–dilatancy behaviour by the HK model (for details
see Sec. 2.5, Fig. 2.6), also for the case when lower limit of void ratio e = 0 is
prescribed (ed0 = 0).
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• The HK model adopts exponential expressions for the isotropic normal compression
and critical state lines [10]. Compared to the logarithmic expression, the exponential
expression has the advantage of having limits for p → 0 and p → ∞. For clays
however the logarithmic expression is more accurate in the stress range applicable
in geotechnical engineering [18], with the further advantage of having one material
parameter less.

• Taking into account the desired simplicity of the calibration of the proposed model,
the parameter defining the position of the critical state line in the e : p plane (ec0)
may be regarded as superfluous. For clays the position of the critical state line
calculated using the state boundary surface of the Modified Cam clay model [117] is
sufficiently accurate, as shown recently for different clays in [32, 33, 34].

• The HK model does not allow specifying directly the swelling index, κ∗. The slope of
the isotropic unloading line is governed by two parameters, α and β. Direct evaluation
of these parameters from isotropic unloading test is complicated and the calibration
is usually performed by means of a parametric study.

The proposed hypoplastic model for clays aims at overcoming the outlined shortcomings
of the HK model and achieving maximal simplicity of the calibration of the new model,
which is desired in practical applications.

2.4 Proposed constitutive model

2.4.1 Tensor L

The tensor L (Eq. (2.9)) determines, in the model enhanced by the intergranular strain
concept (Sec. 2.2.3), the initial hypoelastic stiffness and causes the HK model to predict a
decrease of the initial shear modulus G0 with the stress ratio η, which is not in agreement
with experiment (see Sec. 2.3). The influence of η on G0 is caused by the factor 1/(T̂ : T̂)
(where T̂ = T/trT), the decrease of the scalar quantity ξ as the stress approaches limit
state and the factor F , which increases the compressibility for Lode angles different than
π/6.

The influence of the first two factors is studied using the concept of incremental response
envelopes [134]. This concept follows directly from the concept of rate response envelope
[50], with rates replaced by finite–size increments with constant direction of stretching ~D
(for brevity, incremental response envelopes are referred to as response envelopes in this
work). Response envelopes are plotted for ∆t‖D‖ = 0.0015, where t is pseudo–time used
for time integration of the model response. The HK model enhanced by the intergranular
strain concept is used in the simulations, modified by either keeping 1/(T̂ : T̂) = const. = 3
or η = const. = 1 (Fig. 2.1). The initial value of the intergranular strain tensor δ is equal
to 0.
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Figure 2.1: The influence of the stress factor 1/(T̂ : T̂) (left) and the scalar quantity ξ
(right) in the expression for L on the size and shape of response envelopes.

It may be seen From Fig. 2.1 (left) that the influence of the stress quantity 1/(T̂ : T̂) is not
significant. In the VW model this quantity was introduced in order to emphasize that the
overall compressibility of sand is larger at higher stress ratios. For clays it is well known
that the normal compression lines are approximately parallel for different radial stress
paths (as isotropic and K0 normal compression lines and critical state line). Following
Niemunis [106], the factor 1/(T̂ : T̂) may be disregarded and in the present model it is
replaced by its isotropic value equal to 3.

Fig. 2.1 (right) shows that the influence of the factor ξ, which in the HK model must
decrease with ϕmob in order to ensure that the model predicts correctly the critical state
(Sec. 2.2.2), is very significant. The response envelopes become narrower as the stress
approaches the critical state and the initial shear modulus G0 decreases significantly. The
proposed model therefore does not make use of the quantity ξ and so constant values of
scalar factors c1 and c2 (Sec. 2.2.2) are assumed. This modification is enabled by adopting
the generalised hypoplastic formulation (Sec. 2.2.1).

In the VW model the factor F had to enter the expression for L to ensure that the function
B conforms with the Matsuoka–Nakai failure criterion. As quoted in Sec. 2.3, according
to experiments on fine–grained soils, G0 is independent of η in both triaxial compression
and extension [139]. Therefore, the factor F should be in the expression for L omitted.

We assume the following formulation of the hypoelastic tensor L:

L = 3
(

c1I + c2a
2T̂ ⊗ T̂

)

. (2.15)

The calculation of scalar factors c1 and c2, which follows [61], is described in Sec. 2.4.6.
The scalar factor a is a function of material parameter ϕc and follows from VW model,

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc
. (2.16)
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2.4.2 Limit stress condition Y

As shown, for example, in [73, 20, 114] the Drucker–Prager critical state stress criterion,
which is assumed also by the Modified Cam clay model, is not suitable for clays. The actual
critical state stress criterion circumscribes the Mohr–Coulomb criterion with approximately
equal friction angles in triaxial compression and extension.

Therefore, the Matsuoka–Nakai [85] criterion assumed by the VW hypoplastic model is
applicable also for clays. It is described by the equation

f = − I1I2
I3

− 9 − sin2 ϕc

1 − sin2 ϕc
≤ 0, (2.17)

with the stress invariants

I1 = trT, I2 =
1

2

[

T : T − (I1)
2
]

, I3 = detT. (2.18)

As pointed out by Niemunis [106], the quantity Y should have a minimum value at the
isotropic axis (maximum Y = 1 at the critical state stress criterion). Direct linear inter-
polation between the isotropic value Y = Yi and limit state value Y = 1 is assumed in the
proposed model, following [106].

Using the fact that I1I2/I3 = −9 at the hydrostatic stress state, the linear interpolation
reads

Y = (1 − Yi)









− I1I2
I3

− 9

9 − sin2 ϕc

1 − sin2 ϕc
− 9









+ Yi, (2.19)

with Yi being equal to the isotropic value of the function ‖B‖ of the VW (HK) model,

Yi =

√
3a

3 + a2
. (2.20)

2.4.3 Hypoplastic flow rule (tensorial quantity m)

~m = m/‖m‖ is a tensorial function that should have purely volumetric direction at
isotropic stress state and purely deviatoric direction (tr m = 0) at Matsuoka–Nakai states,

{

~m = −T̂
∗
/‖T̂∗‖, for Y = 1;

~m = − 1√
3
1, for Y = Yi,

(2.21)

where the stress quantity T̂
∗

is defined as T̂
∗

= T̂ − 1/3. A suitable candidate is the
function −B of the VW hypoplastic model [141],

m = − a

F

[

T̂ + T̂
∗ − T̂

3

(

6 T̂ : T̂ − 1

(F/a)2 + T̂ : T̂

)]

, (2.22)
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with factor F defined by

F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ, (2.23)

where

tanψ =
√

3‖T̂∗‖, cos 3θ = −
√

6
tr
(

T̂
∗ · T̂∗ · T̂∗)

[

T̂
∗

: T̂
∗]3/2

. (2.24)

Note that the adopted formulation of the function m implies radial strain increments in
octahedral plane at the critical state. For fine–grained soils this choice is supported by the
experimental evidence given by Kirkgard and Lade [73].

2.4.4 Barotropy factor fs

The aim of the barotropy factor fs is to incorporate the influence of the mean stress
p = −trT/3. The calculation of the factor fs is based on the formulation of the pre–
defined isotropic normal compression line.

The proposed model assumes isotropic normal compression line linear in the ln(1+e) : ln p
space, which is suitable for clays [18]. Its position is governed by the parameter N and its
slope by the parameter λ∗,

ln(1 + e) = N − λ∗ ln p. (2.25)

Time differentiation of (2.25) results in

ė

1 + e
= − λ∗

p
ṗ. (2.26)

The already defined quantities L, m and Y , together with the yet unknown values of
pyknotropy factor fd at the isotropic normally compressed state (fdi) and the factors c1
and c2, may be used to derive the form of the Eq. (2.7) for isotropic stress state. With the
use of

ṗ = − 1

3
trT̊, D =

ė

3 (1 + e)
1, and ‖D‖ =

|ė|
3 (1 + e)

√
3, (2.27)

we find

ṗ = − fs
3 (1 + e)

(

3c1 + a2c2
)

[

ė+ fdi
a
√

3

3 + a2
|ė|
]

. (2.28)

As discussed in Sec. 2.2.2, calculation of the scalar factor c2, introduced in [61], ensures
that the modification of the tensor L does not influence the isotropic formulation of the
model. Therefore it follows from (2.28) that

3c1 + a2c2 = 3 + a2. (2.29)
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Eq. (2.28) may be therefore simplified to

ṗ = − 1

3 (1 + e)
fs

[

(

3 + a2
)

ė+ fdia
√

3|ė|
]

, (2.30)

and for isotropic compression with ė < 0

ṗ = −
[

1

3 (1 + e)
fs

(

3 + a2 − fdia
√

3
)

]

ė. (2.31)

Comparing (2.26) with (2.31) we derive the expression for the barotropy factor fs,

fs = − trT

λ∗

(

3 + a2 − fdia
√

3
)−1

. (2.32)

2.4.5 Pyknotropy factor fd

The pyknotropy factor fd was introduced in [53] in order to incorporate the influence of
density (overconsolidation ratio) on the soil behaviour. If we assume, following discussion
in Sec. 2.3, that the lower limit of void ratio is e = 0 for clays, the pyknotropy factor fd
has the following properties:

• fd = 0 for p = 0;

• fd = 1 at the critical state;

• fd = const. > 1 at isotropic normally compressed states.

Moreover, the pyknotropy factor fd should have constant value along any other normal
compression line (reasons for this choice are demonstrated in [95]). Taking into account
the outlined properties of the factor fd, we propose a simple expression

fd =

(

p

pcr

)α

, (2.33)

where pcr is the mean stress at the critical state line at the current void ratio (Fig. 2.2).

As discussed in Section 2.3, the position of the critical state line in ln(1 + e) : ln p space
does not need to be controlled by an additional parameter, since for clays this position
is sufficiently accurately defined by the state boundary surface of the Modified Cam clay
model. The expression for the critical state line reads

ln(1 + e) = N − λ∗ ln 2
pcr
pr
, (2.34)

where pr is the reference stress 1 kPa. Therefore,

fd =

[

− 2trT

3pr
exp

(

ln (1 + e) −N

λ∗

)]α

. (2.35)
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The scalar quantity α is calculated to allow for a direct calibration of the swelling index
κ∗, defined as the slope of the isotropic unloading line in the ln(1 + e) : ln p space. This
line has the expression

ln(1 + e) = const. − κ∗ ln p, (2.36)

which leads after time differentiation to

ė

1 + e
= − κ∗

p
ṗ. (2.37)

For isotropic unloading from the isotropic normally compressed state the proposed model
has the form (from Eq. (2.30))

ṗ = −
[

1

3 (1 + e)
fs

(

3 + a2 + fdia
√

3
)

]

ė. (2.38)

Having defined the barotropy factor fs (2.32) and the pyknotropy factor for the isotropic
normally compressed state fdi (from Eqs. (2.35) and (2.25)),

fdi = 2α, (2.39)

we may rewrite Eq. (2.38) to get

ṗ = −
[

p

λ∗ (1 + e)

(

3 + a2 + 2αa
√

3

3 + a2 − 2αa
√

3

)]

ė. (2.40)

Comparing (2.40) with (2.37) we derive the expression for the scalar quantity α,

α =
1

ln 2
ln

[

λ∗ − κ∗

λ∗ + κ∗

(

3 + a2

a
√

3

)]

. (2.41)

The meaning of the model parameters N , λ∗ and κ∗ is demonstrated in Fig. 2.2.

2.4.6 Scalar factors c1 and c2

Calculation of the factor c2 is based on Eq. (2.29) and follows [61],

c2 = 1 + (1 − c1)
3

a2
. (2.42)

For the calculation of the factor c1, we define the constitutive parameter r as the ratio of
the bulk modulus in isotropic compression (Ki) and the shear modulus in undrained shear
(Gi) for tests starting from the isotropic normally compressed state. Manipulation with
the proposed model leads to expressions for Ki and Gi,

Ki =
fs
3

(

3 + a2 − 2αa
√

3
)

, (2.43)

Gi =
3

2
fsc1. (2.44)
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Figure 2.2: Definition of parameters N , λ∗ and κ∗ and quantities pcr and p∗e (from Sec.
2.5).

Because r = Ki/Gi, we find

c1 =
2
(

3 + a2 − 2αa
√

3
)

9r
. (2.45)

Having obtained factors c1 and c2, the mathematical formulation of the proposed model is
complete. It is summarized in Appendix C. The model requires five constitutive parame-
ters: ϕc, λ

∗, κ∗, N and r.

2.5 Inspection into properties of the model

2.5.1 Shear moduli

A significant shortcoming of the HK model is the underprediction of the initial shear stiff-
ness G0 for tests starting from anisotropic stress states. This deficiency is very important
for practical applications, since the stress state in the field is often anisotropic.

Using the intergranular strain concept (Sec. 2.2.3), the quasi–elastic behaviour is controlled
by the equation

T̊ = mRfsL : D. (2.46)

In the following, we restrict our attention only to axisymmetric conditions, as we want to
examine possibility of calibration of model parameters, not to provide a full analysis of
model performance. We may define the shear modulus G∗ using Roscoe’s variables p, q, ǫv
and ǫs (e.g., [104]) as follows [47]:

[

ṗ
q̇

]

=

[

K∗ J
J 3G∗

] [

ǫ̇v
ǫ̇s

]

. (2.47)
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Figure 2.3: Influence of the stress ratio η on the hypoelastic shear modulus G∗
0 calculated

by the HK (left) and proposed (right) models with intergranular strains.
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Because the hypoelastic stiffness tensor L is not isotropic, G∗ is equal to the equivalent
shear modulus defined by G = q̇/(3ǫ̇s) only for undrained conditions.

Combining (2.46) and (2.47) we find that

G∗
0 =

mRfs
3

[

L1111 − 2L2211 +
1

2
(L2222 + L2233)

]

. (2.48)

Substituting expressions for L (2.15) and fs (2.32) we get

G∗
0 =

mRp

3λ∗
(

3 + a2 − 2αa
√

3
)

[

27

2
c1 +

c2a
2

p2

(

T 2
11 − 2T22T11 +

1

2
T 2

22 +
1

2
T22T33

)]

, (2.49)

and therefore

G∗
0 =

mRp

3λ∗
(

3 + a2 − 2αa
√

3
)

(

27

2
c1 + c2a

2η2

)

. (2.50)

Eq. (2.50) shows that the modulus G∗
0 predicted by the proposed model depends both on

the mean stress p and stress ratio η. The second term in parenthesis in (2.50) is however
significantly smaller, than the first term (for parameters derived in Sec. 2.6 and η = 0.5
the first term is 13.2 times larger). Therefore, contrary to the HK model, the influence of
η on G∗

0 is not significant. This observation is shown in Fig. 2.3 (right), with predictions
by the HK model in Fig. 2.3 (left) for comparison. This drawback of the formulation of
HK model is also demonstrated in Fig. 2.4 (left). The initial stiffness for the stress path,
which starts at anisotropic stress state and passes isotropic stress state, is underpredicted
and the model predicts unrealistic increase of the tangent stiffness at isotropic conditions.
The improved prediction by the proposed model is in Fig. 2.4 (right).

As follows from Fig. 2.3 (right), for stress states with lower stress ratios η we can neglect
the second term in (2.50) and write

G∗
0 ≃ 9mRc1

2λ∗
(

3 + a2 − 2αa
√

3
)p, (2.51)

and after substituting the expression for c1 (2.45) we get the final simple form

G∗
0 ≃ mR

rλ∗
p. (2.52)

The shear modulus G∗
0 may be measured by means of an undrained shear test2 in a triaxial

apparatus equipped with high–accuracy local strain transducers (e.g., LVDT transducers
[35]). However, because accurate quasi–static measurements of the shear stiffness are
problematic, it is useful to derive an expression for the out–of–axis shear modulus Gvh0
[133, 78, 27, 80] (upper index v stands for vertical and h for horizontal direction), which can
be measured by dynamic stiffness measurements (e.g., bender element tests [68]). Because

Gvh0 =
mRfs

2
L1212, (2.53)

2In the context of this paper, the term “shear tests” is used for various types of axisymmetric loading
tests performed in a triaxial cell, not in simple or torsional shear apparatuses.
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Figure 2.5: Response envelopes of the proposed model (left) and HK model (right) with
and without intergranular strains for isotropic stress states and for ϕmob = 18◦ (with
ϕc = 22.6◦) in triaxial compression and extension.

we find, after substituting expressions for L (2.15), fs (2.32) and c1 (2.45), that

Gvh0 =
mR

rλ∗
p. (2.54)

Therefore, at axisymmetric conditions the proposed model predicts a linear dependency of
the initial shear modulus Gvh0 on the mean stress p, which is approximately correct (e.g.
[148, 139]). Eq. (2.54) is valuable for the calibration of the parameter mR, as discussed in
Sec. 2.6.

In the previous paragraph we demonstrated that the initial shear stiffness in the “quasi–
elastic” range of the proposed model is practically independent of the stress ratio η. Never-
theless, the shear stiffness for intergranular swept–out–memory states [108] (and the shear
stiffness of the basic model without intergranular strain concept) must vanish as the stress
approaches Matsuoka–Nakai states. This property of the proposed model can be studied
using response envelopes (Fig. 2.5 (left)). It is evident that the response envelopes of the
model with intergranular strain are centered about the reference stress point. On the other
hand, for larger ϕmob the response envelopes of the basic model are significantly translated
(ultimately, at Matsuoka–Nakai limit state they touch the reference stress point). It is
also worth noting that the response envelopes do not change their shape substantially as
the stress approaches the critical state. This is not the case for the HK model (Fig. 2.5
(right)), where the response envelopes for larger ϕmob become narrower. Note that also the
VW hypoplastic model for granular materials retains similar shapes3 of response envelopes
for different ϕmob.

3Only the size of response envelopes decreases slightly, due to the factor 1/(T̂ : T̂) in the expression for
L (Sec. 2.4.1).
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Figure 2.6: Normalized stress paths of drained shear tests calculated by the HK (a) and
proposed (b) models, with critical states indicated by points. Experimental results by
Rampello and Callisto [114] on natural Pisa clay for qualitative comparison (c). Simulations
were performed with e = const., q = 0 kPa and varying p.

2.5.2 Stress–dilatancy behaviour

In this section we will study the influence of the novel expression for the pyknotropy factor
fd. Since a detailed study on the shape of the state boundary surface of the proposed
constitutive model, defined as a boundary of all admissible states in the stress–porosity
space, is presented in a forthcoming paper [95], we will restrict our attention to the shape
of stress paths normalized by the equivalent pressure at the isotropic normal compression
line p∗e [64] (Fig. 2.2), defined by

p∗e = exp

{

N − ln(1 + e)

λ∗

}

. (2.55)

They are shown for drained triaxial tests in Fig. 2.6 (b), experimental results on natural
Pisa clay [114] are given in Fig. 2.6 (c) for qualitative comparison. The proposed model
predicts correctly dilatant/contractant behaviour for a wide range of overconsolidation
ratios, down to p = 0. The increase in the peak friction angle for states dry of critical
(defined by p < pcr or p/p∗e < 0.5) is also evident.

Predictions by the HK model are shown for comparison in Fig. 2.6 (a). This figure reveals
another shortcoming of the HK (VW) model, discussed by Niemunis et al. [110]. This
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model allows the lower limit of void ratio ed to be surpassed. The parts of the stress paths,
which pass inadmissible state e < ed, are plotted using dotted lines in Fig. 2.6 (a)4. It
is clear that unlike the proposed model the HK model is not suitable for modelling clays
with higher overconsolidation ratios.

2.5.3 Limitations of the proposed model

After sumarising the main advantages of the proposed model, let us now point out its
limitations.

A particular form of barotropy and pyknotropy factors fs and fd prescribe constant shape
and size of the state boundary surface (see [95] for detailed explanation). Therefore, the
model is suitable for modeling reconstituted clays and natural clays with “stable” structure
(constant sensitivity, in a sense defined in [34]). Its application to soft natural clays requires
further development.

The aim of the work is to provide a practical engineering model with a minimal number
of parameters, which may be evaluated on the basis of standard laboratory experiments.
This fact certainly restricts freedom for calibration, which may be found to be limiting for
certain non–standard geotechnical applications. In such a case, the proposed model may
be used as a basis for further modifications.

2.6 Determination of parameters

The model is evaluated on the basis of laboratory tests on reconstituted London clay (Maš́ın
[86, 98]). These were performed in computer controlled triaxial apparatuses. In addition
to the standard equipment, three local submersible LVDT transducers RDP D5/200 [35]
and a pair of bender elements [68] were used in order to study also the behaviour in the
small strain range.

Parameters N , λ∗ and κ∗: These parameters were calibrated on the basis of a single
isotropic loading/unloading test (Fig. 2.7 left). Isotropic loading must exceed preconsoli-
dation pressure in order to find the position and the slope of the normal compression line.
Parameter κ∗ should be calibrated from the slope of the isotropic unloading line close to
the normally compressed state5.

Parameter ϕc: The critical state friction angle was found using a linear regression
through the critical state points of all shear tests available.

4Note that the factor fd of the HK model is a complex number for e < ed. In order to perform analyses,
fd = 0 for e < ed was prescribed, so predictions were for these states hypoelastic.

5Note that the proposed model is formulated in such a way that the slope of the predicted isotropic
unloading line in ln(1 + e) : ln p space is exactly equal to parameter κ∗ only for unloading from normally
compressed state.
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Figure 2.7: Calibration of parameters N , λ∗ and κ∗ on the basis of isotropic loading and
unloading test. Unlike the experiment, simulation started from normally compressed state
(left). Calibration of parameter r using a parametric study (right).

Table 2.1: Summary of parameters of the basic version of the proposed model (left) and of
the intergranular strain extension (right) for London clay. Standard values may be assumed
for parameters in parenthesis

ϕc [◦] λ∗ κ∗ N r
22.6 0.11 0.016 1.375 0.4

mR (mT ) (R) (βr) (χ)
4.5 (4.5) (10−4) (0.2) (6)

Parameter r: Parameter r may be evaluated directly, using the definition (Sec. 2.4.6), as
a ratio of the bulk and shear moduli for tests starting from isotropic normally compressed
stress state. However, since the model predicts gradual degradation of the shear stiffness,
it is advisable to find an appropriate value of the parameter r by a parametric study.
This approach is acceptable because there is no interrelation with other model parameters,
which would require parametric study for calibration.

The parameter r was calibrated on the basis of the stress–strain curve of the shear test
with constant mean pressure on K0 overconsolidated specimen (PhM19), Fig. 2.7 (right).

Parameters for the small strain range (intergranular strain concept): Inter-
granular strain concept (Sec. 2.2.3) requires five additional model parameters. Their
calibration is described in the original paper [108]. Experience however shows that three
of these parameters have similar values for a broad range of different soils and without
suitable laboratory experiments we can assume “standard” values: R = 10−4, βr = 0.2
and χ = 6. Due to the lack of suitable laboratory experiments we also assume mT = mR.

The parameter mR may be conveniently calibrated on the basis of the shear stiffness
measurements with bender elements using Eq. (2.54). Knowing the values of parameters
λ∗ and r we use a linear regression in Gvh0 : p space and from the slope calculate the value
of parameter mR, as shown in Figure 2.8.

Derived parameters of the proposed model for London clay are given in Table 2.1.
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2.6.1 Calibration of the HK model

The HK model was calibrated on the basis of the same laboratory tests as the proposed
model to compare their predictions. Parameters hs, n and ei0, which define the position
and the shape of the isotropic normal compression line, were calibrated using isotropic
compression test depicted in Fig. 2.7 (left). An isotropic unloading test was used to
calibrate parameters α and β. Because a direct calibration is difficult, parameters α and
β were derived by means of a parametric study. It may be seen from Fig. 2.7 (left) that
correctly chosen parameters allow similar predictions of the isotropic test by both the HK
and the proposed model (in the chosen stress range). The advantage of the proposed model
is the smaller number of parameters, which all have a well defined physical meaning.

The parameter ec0 was calibrated by fitting the position of the critical state line in p : e
space. The calculation of the parameter ed0 from the water content at the plastic limit,
as suggested in [61], leads to incorrect predictions of dilatant/contractant behaviour of
overconsolidated specimens. The calibration of ed0 was therefore based on the correct
predictions of dilatant behaviour of an overconsolidated specimen (PhM19). Finally, the
parameter r was evaluated using a parametric study on a stress–strain curve of the test
PhM19. The numerical value of the parameter r is different compared to the proposed
model, due to slightly different expressions for scalar factor c1, see Appendixes A and C6.
The HK model does not allow direct evaluation of the parameter mR using G0 : p curve.
Small strain parameters of the proposed model were therefore assumed also for the HK
model. Parameters of the HK model are summarized in Table 2.2.

6In the formulation of the HK model, the expression for fdi is omitted in the calculation of the scalar
factor c1
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Table 2.2: Summary of parameters of the basic version of the HK model for London clay.

φc [◦] hs [kPa] n ed0 ec0 ei0 α β r
22.6 659 0.214 2.6 2.8 3.23 0.45 2 0.6
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Figure 2.9: Stress–strain curves of three different compression tests. Experimental (left)
and simulated (right). Simulation by the basic versions of the HK and proposed model.

2.7 Model predictions

An extensive evaluation of the predictions by the proposed model, compared with different
elasto–plastic and hypoplastic models, is presented in a forthcoming paper [99]. In this
work, we simulate laboratory experiments, which were not used to calibrate the constitutive
model7, in order to demonstrate the capability of the model to predict different aspects of
the clay behaviour. The basic version of the model is mostly used, the intergranular strain
concept is adopted only when the behaviour at small strains is important.

Two other shear tests in addition to the test PhM19 were simulated. An undrained com-
pression test on a nearly normally compressed specimen (PhM21) and a constant p′ exten-
sion test on a K0 overconsolidated specimen (PhM17). The experimental and simulated
stress–strain curves are shown in Fig. 2.9. To assess volumetric changes in drained tests
and development of pore pressures in undrained tests, it is useful to study the shape of
stress paths normalized with respect to the equivalent pressure p∗e, shown in Fig. 2.10.

Comparisons of predictions by the HK and proposed model in Figs. 2.9 and 2.10 indicate
that for soils with medium overconsolidation ratios the predictions of the shear behaviour
at large strains are similar. In this case the proposed model has the advantage of a simpler
calibration. For higher overconsolidation ratios however, large–strain predictions by both
models differ significantly due to the different formulation of the pyknotropy factor fd (Fig.
2.6).

Since stiffness at small strains was measured by means of local LVDT transducers, we can

7Except for parameter ϕc

33



2.7. Model predictions Chapter 2. Hypoplastic model for clays

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6 0.7 0.8

q/
p* e

p/p*e

PhM17
PhM19
PhM21

proposed model
HK model

Figure 2.10: Normalised stress paths of three shear tests. Simulation by the HK and
proposed models, both extended with the intergranular strain concept.

0

5

10

15

20

25

30

35

40

45

50

1e-05 1e-04 0.001 0.01 0.1

G
 [M

P
a]

εs [-]

HK model

PhM17
PhM19
PhM21

(a)

0

5

10

15

20

25

30

35

40

45

50

1e-05 0.0001 0.001 0.01 0.1

G
 [M

P
a]

εs [-]

proposed model

PhM17
PhM19
PhM21

(b)

0

5

10

15

20

25

30

35

40

45

50

1e-05 0.0001 0.001 0.01 0.1

G
 [M

P
a]

εs [-]

experiment

PhM17
PhM19
PhM21

(c)

Figure 2.11: Degradation of the tangent shear stiffness at small strains. Simulation by the
HK (a) and proposed (b) model, both enhanced by the intergranular strain concept, and
experimental results (c).
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Figure 2.12: Variation of bulk modulus in the isotropic unloading test with different de-
grees of strain path rotation. Experiment and simulation by the proposed model with
intergranular strains.

study also the capability of the models to predict degradation of the shear stiffness in the
small strain range, Fig. 2.11. The proposed model (Fig. 2.11 (b)) predicts correctly initial
shear modulus and degradation of stiffness for tests PhM17 and PhM19, although the test
PhM17 started from an anisotropic stress state (Fig. 2.10). The initial stiffness of the
test PhM21 is slightly overpredicted. This comes from the fact that the test PhM21 was
performed at a larger mean stress (450 kPa) than the stress range used for calibration of
the parameter mR (Fig. 2.8). Predictions by the HK model (Fig. 2.11 (a)) are comparable
with predictions by the proposed model only for the test PhM21, which started from the
nearly isotropic stress state. The initial stiffness of the test PhM17, with the anisotropic
initial stress state, is significantly underpredicted and the HK model simulates an incorrect
increase of the shear stiffness at larger shear strains.

One isotropic loading/unloading test was performed with two different degrees of strain
path rotation (0◦ and 180◦) starting from the same mean stress and overconsolidation ratio.
Experimental variation of the bulk moduli and simulations by the proposed model are
shown in Fig. 2.12. The experimental data show a marked scatter and the model predicts
correctly the trend. Satisfactory predictions were achieved although the parameter mR

was calibrated only on the basis of dynamic measurements of the shear stiffness.

2.8 Conclusions

This paper has presented a new hypoplastic constitutive model for clays. The model uses
a formulation of the generalised hypoplasticity [106], which allows independent treatment
of different aspects of soil behaviour. In this way it was possible to develop a model
particularly suitable for fine–grained soils.

The proposed model combines hypoplasticity principles with the traditional critical state
soil mechanics. Parameters required by the model correspond to the parameters of the
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Modified Cam clay model and are simple to calibrate on the basis of standard laboratory
tests, which makes the model particularly suitable for practical applications.

The model has been developed to predict soil behaviour at larger strains. However, it may
be enhanced simply by the intergranular strain concept [108] to allow predictions to also
be made at small to very small strains. The calibration of additional parameters, which
are related to the parameters of the basic model, have also been discussed briefly in the
paper.

The model is evaluated on the basis of high quality laboratory measurements on recon-
stituted specimens of London clay. It is demonstrated that with a minimal number of
parameters the model is capable of predicting a wide range of aspects of fine grained soils
behaviour. Apart from the advantage of simpler calibration, the proposed model signifi-
cantly improves predictions of the HK model [61] for clays with higher overconsolidation
ratios and predictions of the behaviour in the small–strain range at anisotropic stress states.

Appendix A

This appendix summarizes mathematical formulation of a hypoplastic model for soils with
low friction angles by Herle and Kolymbas [61].

The model assumes the following stress–strain relation:

T̊ = fsL : D + fsfdN‖D‖, (2.56)

with

L =
1

T̂ : T̂

(

c1F
2
I + c2a

2T̂ ⊗ T̂
)

, (2.57)

N =
Fa

T̂ : T̂

(

T̂ + T̂
∗)
, (2.58)

where 1 is a second–order unity tensor, Iijkl = 1
2 (1ik1jl + 1il1jk) is a fourth-order unity

tensor and

trT = T : 1, T̂ = T/trT, T̂
∗

= T̂ − 1/3, (2.59)

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc
, F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ, (2.60)

with

tanψ =
√

3‖T̂∗‖, cos 3θ = −
√

6,
tr
(

T̂
∗ · T̂∗ · T̂∗)

[

T̂
∗

: T̂
∗]3/2

. (2.61)
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The scalar factors fs and fd take into account the influence of mean pressure and density,

fs =
hs
n

(ei
e

)β 1 + ei
e

(−trT

hs

)1−n [

3c1 + a2c2 − a
√

3

(

ei0 − ed0
ec0 − ed0

)α]−1

, (2.62)

fd =

(

e− ed
ec − ed

)α

. (2.63)

The characteristic void ratios – ei, ec and ed decrease with the mean pressure according to
the relation

ei
ei0

=
ec
ec0

=
ed
ed0

= exp

[

−
(−trT

hs

)n]

. (2.64)

The scalar factors c1 and c2 are calculated using

c1 =

(

1 + 1
3a

2 − 1√
3
a

1.5r

)ξ

, (2.65)

c2 = 1 + (1 − c1)
3

a2
, (2.66)

ξ =

〈

sinϕc − sinϕmob
sinϕc

〉

, where sinϕmob =
T1 − T3

T1 + T3
. (2.67)

T1 and T3 are the maximal and minimal principal stresses, ϕmob is a mobilized friction
angle and 〈〉 are Macauley brackets: 〈x〉 = (x+ |x|)/2.
The model requires 9 parameters: φc, hs, n, ed0, ec0, ei0, α, β and r.

Appendix B

To capture correctly behaviour in the small to very small strain range the hypoplastic
model must be enhanced by the intergranular strain concept [108].

In the extended hypoplastic model the strain is considered as a result of deformation
of the intergranular interface layer and of rearrangement of the skeleton. The interface
deformation is called intergranular strain δ and is considered as a new tensorial state
variable (δ is a symmetric second–order tensor). It is convenient to denote the normalized
magnitude of δ as

ρ =
‖δ‖
R
, (2.68)

and the direction δ̂ of the intergranular strain as

δ̂ =

{

δ/‖δ‖, for δ 6= 0;
0, for δ = 0.

(2.69)
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The general stress–strain relation is now written as

T̊ = M : D. (2.70)

The fourth-order tensor M represents stiffness and is calculated from the hypoplastic
tensors L and N and a function of the intergranular strain using the following interpolation:

M = [ρχmT + (1 − ρχ)mR] fsL+

{

ρχ (1 −mT ) fsL : δ̂ ⊗ δ̂ + ρχfsfdNδ̂, for δ̂ : D > 0;

ρχ (mR −mT ) fsL : δ̂ ⊗ δ̂, for δ̂ : D ≤ 0.
(2.71)

The evolution equation for the intergranular strain tensor δ is governed by

δ̊ =

{
(

I − δ̂ ⊗ δ̂ρβr

)

: D, for δ̂ : D > 0;

D, for δ̂ : D ≤ 0.
(2.72)

where δ̊ is the objective rate of intergranular strain. The hypoplastic model with inter-
granular strains requires five additional model parameters: R, mR, mT , βr and χ.

Appendix C

Mathematical formulation of the proposed hypoplastic constitutive model for clays:

The general stress–strain relation reads

T̊ = fsL : D + fsfdN‖D‖, (2.73)

with

N = L :

(

−Y m

‖m‖

)

. (2.74)

The hypoelastic tensor L is

L = 3
(

c1I + c2a
2T̂ ⊗ T̂

)

, (2.75)

where 1 is a second–order unity tensor, Iijkl = 1
2 (1ik1jl + 1il1jk) is a fourth-order unity

tensor and

trT = T : 1, T̂ = T/trT, T̂
∗

= T̂ − 1/3, (2.76)

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc
. (2.77)

The degree of nonlinearity Y , with the limit value Y = 1 at Matsuoka–Nakai failure surface,
is calculated by

Y =

( √
3a

3 + a2
− 1

)

(I1I2 + 9I3)
(

1 − sin2 ϕc
)

8I3 sin2 ϕc
+

√
3a

3 + a2
, (2.78)
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with stress invariants I1, I2 and I3,

I1 = trT, I2 =
1

2

[

T : T − (I1)
2
]

, I3 = detT. (2.79)

The tensorial quantity m defining the hypoplastic flow rule has the following formulation:

m = − a

F

[

T̂ + T̂
∗ − T̂

3

(

6 T̂ : T̂ − 1

(F/a)2 + T̂ : T̂

)]

, (2.80)

with factor F given by

F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ, (2.81)

where

tanψ =
√

3‖T̂∗‖, cos 3θ = −
√

6
tr
(

T̂
∗ · T̂∗ · T̂∗)

[

T̂
∗

: T̂
∗]3/2

. (2.82)

Barotropy and pyknotropy factors fs and fd read

fs = − trT

λ∗

(

3 + a2 − 2αa
√

3
)−1

, fd =

[

− 2trT

3pr
exp

(

ln (1 + e) −N

λ∗

)]α

, (2.83)

where pr is the reference stress 1 kPa and the scalar quantity α is calculated by

α =
1

ln 2
ln

[

λ∗ − κ∗

λ∗ + κ∗

(

3 + a2

a
√

3

)]

. (2.84)

Finally, factors c1 and c2 are calculated as follows:

c1 =
2
(

3 + a2 − 2αa
√

3
)

9r
, c2 = 1 + (1 − c1)

3

a2
. (2.85)

The model requires five constitutive parameters: ϕc, λ
∗, κ∗, N and r.
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Chapter 3

State boundary surface of a
hypoplastic model for clays

3.1 Introduction

Hypoplastic constitutive models have been developed since 1980’s and since then they have
established a solid base for an alternative description of the soil behaviour, without an
explicit definition of yield and potential surfaces – see for example the review [133]. Recent
hypoplastic models [53, 141] include the concept of critical states and have been successfully
used in many computations of boundary value problems within coarse-grained soils, e.g.
[136, 112, 70, 100, 36]. The progress of hypoplastic models suitable for the description of
fine-grained soils has been delayed. Rate-dependent [105, 54] and rate-independent [61, 87]
hypoplastic models for clays promise to follow the success of the development for sand.
Nevertheless, a thorough testing of various constitutive aspects is required in order to
ensure a correct performance in general conditions of boundary value problems.

One of the key characteristics of the behaviour of fine-grained soils, incorporated in different
ways in most of the currently available elasto-plastic constitutive models for fine-grained
soils, is a surface in the stress-void ratio space which bounds all admissible states (state
boundary surface, SBS). As hypoplastic models do not incorporate the state boundary sur-
face explicitly, the primary aim of this paper is to investigate if these models (in particular
a hypoplastic model for clays [87]) predict the state boundary surface as a by-product of
the constitutive formulation.

In this paper hypoplastic models will be distinguished according to the terminology laid
out by Kolymbas [77]. Models without internal structure (i.e. with Cauchy stress tensor
T being the only state variable) will be referred to as amorphous, whereas models with
internal structure (incorporated by means of additional state variables) endomorphous. In
this work we restrict our attention to endomorphous models with a single additional state
variable (void ratio e). Solid mechanics sign convention (compression negative) will be
adopted throughout, all stresses are considered as effective in the sense of Terzaghi. The

40



3.2. Response envelopes and SOM states Chapter 3. State boundary surface

operator arrow is defined as ~X = X/‖X‖, trace by trX = X : 1, with 1 being the second-
order unit tensor. T̂ is the normalised stress defined by T̂ = T/ tr T, ‖D‖ =

√
D : D is

the Euclidian norm of D, which stands for the Euler’s stretching tensor.

The paper starts by introducing proportional response envelopes and definition of asymp-
totic (swept-out-memory) states. Thereafter, pointing to the analogy with the limit and
bounding surfaces of amorphous hypoplastic models, a mathematical formulation of the
surface in the stress-void ratio space which covers all asymptotic states (named swept-out-
memory surface) is developed. Further, using the concept of so-called normalised incremen-
tal stress response envelopes, it is demonstrated that swept-out-memory surface is a close
approximation of the state boundary surface. Finally, the influence of model parameters
on the shape of the swept-out-memory surface is discussed.

3.2 Response envelopes and swept-out-memory states

Response envelopes in axisymmetric stress space [50] were proposed as a graphical repre-
sentation of resulting stress rates imposed by different unit strain rates

√

D2
a + 2D2

r = 1
at one particular initial state (Da and Dr being axial and radial strain rates, respectively).
This concept proved to be useful in studying properties of rate-type constitutive equations,
however due to the infinitesimal nature of stress and strain rates they can not be studied
experimentally. Hypoplastic models yield elliptic (smooth) response envelopes, whereas
elasto-plastic models are characterised by non-smooth envelopes.

A modification of the stress-rate envelopes towards incremental stress response envelopes,
as defined in Reference [134], may be applied for finite values of stress and strain increments.
Linear strain paths with a fixed direction of stretching ~D and with a fixed length R∆ǫ (Eq.
(3.2)) yield the stress response ∆T in the stress space T (see Fig. 3.1 for axisymmetric
conditions). The stress increment ∆T may be calculated by the time integration of the
rate form of the constitutive equation:

∆T =

∫ t1

t0

T̊dt (3.1)

where T̊ stands for a co-rotated (Jaumann) stress rate. The shape and size of the incre-
mental stress response envelopes depends on the value of

R∆ǫ = ‖
∫ t1

t0

D dt‖ (3.2)

An inverse procedure with constant
~̊
T and fixed length stress increments R∆σ, constitut-

ing in the strain space incremental strain response envelopes, was applied experimentally
by Royis and Doanh [120] for sand and Costanzo et al. [31] for clays. These results
were followed by numerical investigations using DEM with rigid spheres [24] and used for
evaluation of predictive capabilities of different constitutive models [99, 131].
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∆ε r2

∆ε a q

p

R∆ε

Figure 3.1: On the definition of the incremental stress response envelope for the special
case of axisymmetric conditions

In addition to incremental responses, constitutive models should predict so-called asymp-
totic states, as pointed out by Kolymbas [76]. Stress paths of sound constitutive models
should tend to proportional stress paths (constant ~T) for sufficiently long proportional
strain paths (constant ~D). As corresponding ~T and ~D at asymptotic states are indepen-
dent of the initial state, these states are often denoted as swept-out-memory (SOM) states
[55], and may be seen as attractors of the soil behaviour [51] (see Fig. 3.2).

ε

ε T

T

2

1 1

2

Figure 3.2: SOM-behaviour: proportional stress paths for proportional strain paths

The concept of swept-out-memory states may be extended also to endomorphous constitu-
tive models. For pairs of proportional stress and strain paths one can find corresponding
void ratios ep dependent on the mean stress p = − trT/3 (Fig. 3.3). Combinations of ep
and p plotted in the e : p space are usually denoted as normal compression lines (NCL).
A particular example of SOM-states is the critical state with trD = 0 and T̊ = 0, where
SOM stress ratio follows from the critical state friction angle ϕc and void ratio from the
position of the critical state line in the stress-void ratio space.
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Figure 3.3: Extended SOM-behaviour including void ratio

3.3 Basic properties of the considered constitutive model

This paper focuses on the particular hypoplastic model for clays [87], whose complete
mathematical formulation is given in Appendix A. The model may be written in its most
general form by

T̊ = h (T,D, e) (3.3)

The model belongs to the sub-class of hypoplastic models referred to as endomorphous
(Sec. 3.1). The particular form of the isotropic tensor-valued function h follows from [53]
and reads

T̊ (T,D, e) = fs (trT)
[

L(T̂) : D + fd (trT, e)N(T̂)‖D‖
]

(3.4)

where fs and fd are so-called barotropy and pyknotropy factors [53], which incorporate the
influence of the mean stress and void ratio. Note that differently from [53], the barotropy
factor fs of the hypoplastic model for clays is independent of void ratio e.

The following properties of the considered constitutive equation are important for the
developments presented in this paper:

1. The function h is positively homogeneous of degree 1 in D:

h (T, γD, e) = γh (T,D, e) (3.5)

for any γ > 0. This property implies that the behaviour of the material is not
influenced by any change in the time scale, i.e. the behaviour is rate-independent.

2. For a constant value of the pyknotropy factor fd, the function h is positively homo-
geneous of degree 1 in T, thus

h (γT,D, e) = γh (T,D, e) (3.6)

for any γ > 0. This property follows from the fact that in the considered model the
tensors L and N are functions of the normalised stress T̂ only, and the ratio fs/ trT
is constant (consequence of the assumption of a linear isotropic normal compression
line in the ln(1 + e):ln p space [18]).
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For cases described by Eq. (3.6), the behaviour may be normalised by the current
mean stress p, or in a general case, by Hvorslev’s equivalent pressure on the isotropic
normal compression line p∗e. This procedure will be applied in Sec. 3.5.

3. The model predicts swept-out-memory states, introduced in Sec. 3.2. For a discussion
on the prediction of SOM behaviour by hypoplastic models the reader is referred to
[106].

Before proceeding to the derivation of the state boundary surface of the considered con-
stitutive model, we recall some basic properties of more simple amorphous hypoplastic
models.

3.4 Limit surface and Bounding surface

Amorphous hypoplastic constitutive models (e.g. model from [149]) may still be written
using Eq. (3.4) [80], considering fd = const. Eq. (3.3) therefore reduces to

T̊ = h (T,D) (3.7)

For brevity, we will consider the factor fs in Eq. (3.4) embedded in the constitutive tensors
L and N. Therefore, we may write

T̊ (T,D) = L(T) : D + N(T)‖D‖ (3.8)

Based on the fundamental experimental evidence, all reasonable constitutive models for
soils must consider the domain of admissible states in the stress space, bounded by a surface,
formally defined through an isotropic tensor function. In the sequel, we will distinguish
between two different notions: limit surface and bounding surface:

1. Limit surface [29] f(T), sometimes referred to as invertibility surface [133], failure
surface [154] or yield surface [77], is defined in the stress space as a boundary of all
states where Eq. (3.7) is invertible.

2. Bounding surface [106] b(T) (or bound surface [154]) is defined in the stress space as
a boundary of all admissible states.1

Limit surface has been embedded even in very early versions of hypoplastic models (see,
e.g., [76]) as a by-product of a particular choice of tensorial constitutive functions. It has
been however soon recognised that the mathematical structure of Eq. (3.8) allows us to
define the limit surface explicitly (e.g., [26, 9, 141]).

1Note that this definition is different compared to the one usually adopted for bounding surface plasticity
models [38] and kinematic hardening elasto-plastic models (e.g., [127]), where the term bounding surface is
used for the intersection of the state boundary surface and an elastic wall.
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Following [133], Eq. (3.8) may be written as

γS = L : D + N‖D‖ (3.9)

with γ being the norm of the stress increment γ = ‖T̊‖ and S its direction S =
~̊
T. Due to

the Property 1. of Sec. 3.3 we may, without loss of generality, assume ‖D‖ = 1. Eq. (3.9)
then reads

γS = L : ~D + N = L : (~D + B) (3.10)

with
B = L

−1 : N (3.11)

Expressing (3.11) obviously requires invertibility of the tensor L of the particular amor-
phous hypoplastic model.

From Eq. (3.10) we get
~D = γL−1 : S− B (3.12)

Because ‖~D‖ = 1, we have
1 = ‖γL−1 : S − B‖ (3.13)

and therefore
γ2‖L−1 : S‖2 − 2γ(L−1 : S) : B + ‖B‖2 − 1 = 0 (3.14)

For states inside the limit surface we require that Eq. (3.14) has a single real positive
solution for the norm of the stress increment γ. It may be shown from the requirement

(L−1 : S) : B <

√

[(L−1 : S) : B]2 − ‖L−1 : S‖2(‖B‖2 − 1) (3.15)

that this condition is satisfied for
‖B‖2 − 1 < 0 (3.16)

Equation
‖B‖2 − 1 = 0 (3.17)

therefore describes the limit of invertibility of Eq. (3.8) and, according to its definition,
the limit surface2. The fact that one solution corresponds to γ = 0 may be represented
graphically using the concept of response envelopes (Sec. 3.2). As may be seen from
Fig. 3.4, the reference stress point is then located on the response envelope. For states
outside the limit surface the solution of Eq. (3.14) is not unique and the reference stress
point is located outside the response envelope.

An investigation of Fig. 3.4 reveals that the limit surface f(T) does not coincide with the
bounding surface b(T): for some directions of stretching the corresponding stress rates
surpass f(T). This fact, which was already described for example in [154], is a common
feature of hypoplastic models developed at the University of Karlsruhe (see [133]) and is

2Eqs. (3.10)–(3.17) are useful for the subsequent comparison of the limit and bounding surfaces. Limit
surface may be also found directly from T̊ = 0 following, e.g., [154]. In that case 0 = L : (D + B‖D‖),
thus ~D = −B and ‖B‖ − 1 = 0 at the limit surface, which corresponds to (3.17).
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Figure 3.4: Stress rate response envelopes for the initial stress located on the limit surface

related to the derivation of constitutive tensors L and N. As noticed by [154] and as may
be appreciated also from Fig. 3.4, however, the difference between the bounding and limit
surfaces is not significant from the point of view of parameter identification.

The bounding surface can be mathematically characterised also by Eq. (3.14) requiring the
magnitude of the stress rate γ ≥ 0. Inserting the condition of the limit surface (‖B‖2−1 =
0) into Eq. (3.14) yields

γ2‖L−1 : S‖2 − 2γ(L−1 : S) : B = 0 (3.18)

which leads to inequality constraining the possible directions of the stress rate S:

(L−1 : S) : B > 0 (3.19)

The bounding surface thus follows [133] from the condition

(L−1 : S) : B = 0 (3.20)

As noted above, Eqs. (3.18)–(3.20), describing the bounding surface, hold for stress states
at the limit surface. They may be therefore used to specify conditions for b(T) to coincide
with f(T). As shown in [106], it is possible to enforce coincidence of b(T) and f(T) for
hypoplastic models by a suitable rotation of the hypoelastic tensor L. Note also that
b(T) = f(T) is a common feature of all CLoE hypoplastic models [29].

3.5 Swept-out-memory surface

Let us now consider the case of endomorphous hypoplastic models (particularly the model
from [87]) with the rate-formulation given in Eq. (3.4). For these models, the definitions of
the limit and bounding surfaces in the stress space are not unique, as both depend on the
additional scalar state variable, void ratio e. Based on the experimental evidence, which
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led in 1960’s to the development of the critical state soil mechanics in Cambridge [117, 122],
the constitutive model should describe a single surface in the stress-void ratio space, which
bounds all admissible states. This surface is traditionally called state boundary surface
(SBS). It is, in general, a surface in the four-dimensional space of the three principal
components of the stress tensor T and void ratio e.

The property 2. from Sec. 3.3 allows us to simplify the following developments by intro-
ducing a normalisation factor taking into account both changes of void ratio and of mean
pressure. A suitable quantity is Hvorslev’s equivalent pressure p∗e at the isotropic normal
compression line (see Fig. 3.5), following from the formulation of the isotropic NCL:

ln(1 + e) = N − λ∗ ln

(

p∗e
pr

)

(3.21)

with pr being the reference stress of 1 kPa. Using this normalisation the state boundary

pe
*crp

*λ

*κ

Critical state line

ln p

ln (1+e)

Isotr. normal compression line

N

current state
Isotr. unloading line

1

1

Figure 3.5: On the definition of Hvorslev’s equivalent pressure p∗e.

surface may be, in general, fully characterised in the three-dimensional space defined by
the principal components of the normalised stress tensor Tn, where

Tn =
T

p∗e
(3.22)

The normalised stress rate Ṫn follows from (3.22)

Ṫn =
Ṫ

p∗e
− T

(p∗e)
2 ṗ

∗
e (3.23)

The stress rate Ṫ is, under the assumption of small strains, given by (3.4) and the rate of
ṗ∗e is found by the time-differentiation of the isotropic NCL given by Eq. (3.21):

ė

1 + e
= −λ

∗

p∗e
ṗ∗e (3.24)

47



3.5. Swept-out-memory surface Chapter 3. State boundary surface

From the assumption of grain incompressibility we have

ė = (1 + e) tr D (3.25)

and thus

ṗ∗e = − p
∗
e

λ∗
trD (3.26)

Substituting (3.4) and (3.26) into (3.23) we get

Ṫn =
1

p∗e
(LD + fdN‖D‖) +

T trD

p∗eλ
∗ (3.27)

For brevity, barotropy factor fs has been embedded in the constitutive tensors L and N.

We first try to find an expression equivalent to the limit surface in the stress-void ratio
space. As the limit surface in the stress space was defined by T̊ = 0 for one direction of
stretching ~D (Eq. 3.17), we define its equivalent in the stress-void ratio space by Ṫn = 0.
By applying this definition on (3.27) we get

−T

λ∗
trD = L : D + fdN‖D‖ (3.28)

To solve Eq. (3.28) for a given T with unknowns ~D and fd, we introduce a fourth order
tensor A

A = L +
1

λ∗
T ⊗ 1 (3.29)

such that

A : ~D = L : ~D +
T

λ∗
tr ~D (3.30)

Eq. (3.28) may be divided by ‖D‖ 6= 0 and rewritten

A : ~D + fdN = 0 (3.31)

Since ‖~D‖ = 1, we get
fd = ‖A−1 : N‖−1 (3.32)

(for invertibility condition of the tensor A see Appendix B) and

~D = − A−1 : N

‖A−1 : N‖
(3.33)

As may be seen from the definitions of tensors A and N, the quantity A−1 : N, and
therefore also ~D and fd for Ṫn = 0, are constant for a given ~T. As the condition Ṫn = 0
indeed implies ~T = const., Eq. (3.28) describes asymptotic (swept-out-memory) states as
defined in Sec. 3.2, provided that the evolution equation for fd is consistent with (3.28).
Therefore, we name the equivalent of the limit surface for the stress-void ratio space a
swept-out-memory (SOM) surface. From (3.28) it is also obvious that condition trD = 0
directly implies T̊ = 0, so the critical state is predicted as a particular SOM state.
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The corresponding response in the p : e space may be found by taking the trace of Eq. (3.28)
and considering L : D + fdN‖D‖ = T̊. We get

ṗ = − p

λ∗
tr D (3.34)

which is the rate formulation of the normal compression line with the slope λ∗ in the
ln(1 + e) : ln p space. Positions of different NCLs in this space (and therefore the shape
of the SOM surface) are controlled by the pyknotropy factor fd, which in the considered
model reads

fd =

(

2p

p∗e

)α

(3.35)

with α being a constant calculated from the model parameters (see Appendix A) and p∗e
comes from (3.21). Factor fd is constant along any line characterised by (3.34), which
ensures consistency between evolution equation for fd and (3.28) and thus implies that Eq.
(3.28) describes SOM states.

Combining Eqs. (3.32) and (3.35) allows us to calculate the value of p∗e at the SOM sur-
face at any stress level T and consequently to find the shape of the SOM surface in the
normalised Tn space:

p∗e = − 2

3
trT‖A−1 : N‖1/α (3.36)

The shape of the SOM surface in the normalised triaxial stress space, plotted for triaxial
stress invariants q = −(Ta −Tr) and p, is shown in Fig. 3.6 for material parameters given
in Tab. 3.1.
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Figure 3.6: Swept-out-memory surface in the normalised triaxial stress space for the hy-
poplastic model [87] using London clay parameters (Tab. 3.1)

3.6 State boundary surface

In this section we discuss the difference between the swept-out-memory surface, defined
in Sec. 3.5, and the state boundary surface. Without loss of generality we again study
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response of the considered model in the normalised space Tn. The state boundary surface
is defined as an envelope of all admissible states of a soil element. In other words, no outer
response in the normalised space Tn can be generated. Using the concept of response
envelopes (Sec. 3.2), stress rate response envelope plotted in the normalised Tn space
(normalised response envelope, NRE) for the states at the state boundary surface must
not cross-sect the surface (i.e., must have a common tangent with the state boundary
surface).

We first presume that the state boundary surface is equal to the swept-out-memory surface.
A tangent to the normalised response envelope may then be found using a similar procedure
to that applied in Sec. 3.4 for evaluation of bounding surface of amorphous hypoplastic
models. Let γn be the norm of the normalised stress rate Ṫn (γn = ‖Ṫn‖) and Sn its
direction (Sn = Ṫn/‖Ṫn‖). Using the definition of the tensor A (Eq. 3.29) and assuming,
without loss of generality, ‖D‖ = 1, Eq. (3.27) reads

p∗eγnSn = A : ~D + fdN (3.37)

or
p∗eγnSn = A : (~D + fdBn) (3.38)

with
Bn = A

−1 : N (3.39)

Thus (from (3.38))
~D = p∗eγnA

−1 : Sn − fdBn (3.40)

taking the norm of (3.40) we get

(p∗e)
2γ2
n‖A−1 : Sn‖2 − 2p∗eγnfd

(

A
−1 : Sn

)

: Bn + f2
d‖Bn‖2 − 1 = 0 (3.41)

For the states at the SOM surface we have fd = ‖Bn‖−1 (3.32). Introducing this condition
into (3.41) leads to

p∗eγ
2
n‖A−1 : Sn‖2 − 2γn

(

A
−1 : Sn

)

: ~DSOM = 0 (3.42)

where ~DSOM is the direction of the proportional stretching corresponding to the swept-
out-memory conditions for a given state Tn (from 3.33):

~DSOM = − Bn

‖Bn‖
(3.43)

As γn represents the norm of Ṫn, it must be positive or null. Therefore, possible directions
Sn must be confined in the half-space defined by

(

A
−1 : Sn

)

: ~DSOM > 0 (3.44)

where the plane
(

A
−1 : Sn

)

: ~DSOM = 0 (3.45)
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Figure 3.7: NIREs for the initial K0NC conditions. (b) provides detail of (a). NIREs are
plotted for R∆ǫ = 0.001, 0.0025, 0.005, 0.01, 0.02 (a) and R∆ǫ = 0.001 (b). Points at
NIREs denote compression and extension for D00 = D11 = D22 and trD = 0)

represents a tangent to the normalised response envelope.

Fig. 3.7a depicts the SOM surface, tangent to the normalised response envelope calculated
according to Eq. (3.45) and incremental stress response envelopes (as defined in Sec. 3.2)
plotted in the normalised space Tn (normalised incremental response envelope, NIRE) for
different values of R∆ǫ. Apparently, the tangent to the normalised response envelope is
nearly coincident with the tangent to the SOM surface. A detailed inspection in Fig. 3.7b,
however, reveals that the tangent to the NRE is slightly inclined with respect to the tangent
to the SOM surface and therefore proves that the state boundary surface, in general, does
not coincide with the swept-out-memory surface. The difference between tangents to NRE
and SOM surface is even more pronounced for initial states dry of critical (defined by
p/p∗e < 0.5 in the model considered) as shown in Fig. 3.83.

Therefore, similarly to the limit and bounding surfaces of amorphous hypoplastic models
in the stress space, the state boundary surface is located slightly outside the swept-out-
memory surface. Nevertheless, taking into account uncertainties in the experimental de-
termination of the state boundary surface, we may consider the swept-out-memory surface
as a sufficient approximation of the state boundary surface. For this reason we restrict our
investigations in the next sections to the SOM surface.

Figures 3.7 and 3.8 also demonstrate the asymptotic property of the considered hypoplastic
model, as for large R∆ǫ the normalised incremental response envelopes converge towards
the SOM surface. The model keeps this property also for the initial states outside the
SOM surface (see Fig. 3.9). Therefore, we see that the fact that the model allows to
surpass slightly the SOM surface (SBS is located slightly outside the SOM surface) does

3In Fig. 3.8 normalised incremental response envelopes are cross-sected by the tangent to normalised
response envelopes calculated according to (3.45). This fact is to be expected, as, in general, a tangent to
the NRE represents a tangent to the NIRE only for R∆ǫ → 0.
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Figure 3.8: NIREs for the initial conditions with p/p∗e < 0.5, plotted for R∆ǫ = 0.001,
0.005, 0.01, 0.02, 0.035.

not spoil its abilities to predict asymptotic states.

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

q/
p* e

p/p*e

SOM surface
NIREs

Figure 3.9: NIREs for the initial state outside the SOM surface. The initial state has
been imposed and does not follow from a model prediction. NIREs are plotted for R∆ǫ =
0.001, 0.0025, 0.005, 0.01, 0.02.

3.7 Model performance

3.7.1 The influence of model parameters on the shape of the SOM surface

The SOM surface shown in Fig. 3.6 was found using parameters derived in [87] for London
clay (with the exception of κ∗ = 0.014 instead of κ∗ = 0.016). They are summarised in
Tab. 3.1.

As follows from the equations representing the SOM surface (Sec. 3.5), its shape is de-
pendent on model parameters. A detailed study of Eq. (3.36) reveals that the parameters
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Table 3.1: Parameters for London clay used in the simulations

ϕc [◦] λ∗ κ∗ N r
22.6 0.11 0.014 1.375 0.4

N and λ∗ do not independently influence the shape of the SOM surface (see comments
further) and the influence of the parameter r is negligible (for its reasonable values). The
shape of the SOM surface is controlled by the critical state friction angle ϕc and by the ratio
(λ∗ − κ∗)/(λ∗ + κ∗) appearing in the expression for the pyknotropy factor fd, Eq. (3.58).

The influence of the parameter ϕc is shown in Fig. 3.10a. The value of ϕc was varied in
the analyses, while other parameters (Tab. 3.1) were kept constant. In order to normalise
the response for the variation in ϕc, the SOM surface is plotted in the space q/(Mp∗e):p/p

∗
e

(as suggested in [34]), where the quantity M is defined as:










M =
6 sinϕc

3 − sinϕc
for triaxial compression

M =
6 sinϕc

3 + sinϕc
for triaxial extension

(3.46)

The influence of the ratio (λ∗ − κ∗)/(λ∗ + κ∗) is demonstrated in Fig. 3.10b. The value
of the parameter λ∗ = 0.11 was kept constant, whereas the parameter κ∗ was varied. The
corresponding values of the ratio (λ∗ − κ∗)/(λ∗ + κ∗) are also given in the figure.

Fig. 3.10 reveals that although the influence of the parameter ϕc and of the ratio (λ∗ −
κ∗)/(λ∗ + κ∗) on the shape of the SOM surface is significant, for reasonable values of the
involved parameters the shape remains close to the one predicted by the Modified Cam
clay model. Only for low values of the ratio (λ∗−κ∗)/(λ∗ +κ∗) (large ratio κ∗/λ∗, i.e. soft
response in isotropic unloading), the SOM surface becomes non-convex in the vicinity of
isotropic stress states4.

3.7.2 K0 normally compressed conditions

Finally, the equations for swept-out-memory conditions are applied in a study of the influ-
ence of model parameters on K0 conditions in the normally compressed state (K0NC), see
Fig. 3.11. The parameter ϕc and the ratio (λ∗ − κ∗)/(λ∗ + κ∗) were varied as in Sec. 3.7.1.
Predictions of K0NC by the hypoplastic model are compared with Jáky’s [66] equation

K0NC = 1 − sinϕc (3.47)

As demonstrated for example in [101], Eq. (3.47) is suitable for fine-grained soils. Predic-

4The issue of convexity of a limit surface in the normalised plane is of relevance in the theory of plasticity,
where the convexity of the yield surface is crucial in order to properly define loading/unloading conditions.
In hypoplasticity, whether a non-convex SOM surface is acceptable or not can be judged only with reference
to available experimental data.
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Figure 3.10: The influence of (a) the parameter ϕc and (b) of the ratio (λ∗ −κ∗)/(λ∗ +κ∗)
on the shape of the SOM surface

tions by the Modified Cam clay model [117] are also included in Fig. 3.11. In the calculation
with the Modified Cam clay model, the influence of elastic strain increments, which are at
the yield surface negligible compared to the plastic strain increments, is omitted. Conse-
quently,

K0NC =
3 − η

3 + 2η
(3.48)

for the Modified Cam clay model, with

η =

√
9 + 4M2 − 3

2
and M =

6 sinϕc
3 − sinϕc

(3.49)

It can be seen in Fig. 3.11 that the considered hypoplastic model predicts correctly the
trend of decreasing K0NC with increasing ϕc. Although the hypoplastic model overpredicts
K0NC as compared to Eq. (3.47), its predictions are still significantly closer to Eq. (3.47)
than the predictions by the Modified Cam clay model.

Further discussion on the direction of stretching ~D at SOM conditions with respect to the
corresponding ~T, as well as on the SOM conditions predicted by different endomorphous
hypoplastic models, may be found in [96].

3.8 Concluding remarks

The present paper studied if the hypoplastic model for clays [87] predicts, as a by–product
of the constitutive formulation, the existence of the state boundary surface, which may be
seen as a key characteristics of the behaviour of fine–grained soils.

It has been shown that for the given model it is possible to derive an explicit formulation for
the so-called swept-out-memory surface, which may be defined as an envelope of asymptotic
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Figure 3.11: K0NC conditions predicted by the considered model, compared to Jáky’s [66]
formula and predictions by the Modified Cam clay model [117].

(swept-out-memory) states in the stress-void ratio space. The concept of the normalised
incremental stress response envelopes and the derivation of the tangent to the normalised
rate response envelopes was subsequently used to demonstrate that the swept-out-memory
surface is a close approximation of the state boundary surface, although, in general, they
do not coincide. It has been shown that there is a direct parallel between the swept-
out-memory and the state boundary surfaces defined in the stress-void ratio space for
endomorphous hypoplastic models, and limit and bounding surfaces defined in the stress
space for amorphous hypoplastic models.

Finally the influence of the constitutive parameters on the shape of the swept-out-memory
surface has been studied by means of a parametric study. For parameters suitable for
fine-grained soils, the considered hypoplastic model predicts a swept-out-memory surface
of a similar shape to the state boundary surface of the Modified Cam clay model. However,
the K0 values at normally compressed states are better predicted by the hypoplastic model
than by the Modified Cam clay model.

A study of the shape of the SOM surface (Sec. 3.7) and invertibility condition of A (Ap-
pendix B) reveal limitation of the hypoplastic model for clays, which does not perform cor-
rectly for soils very soft in isotropic unloading. As a very rough guide, condition κ∗ < λ∗/4
should be satisfied when using model [87]. More precise investigation requires to plot the
SOM surface and to ensure that the condition (3.66) is not satisfied.

Appendix A

The mathematical structure of the hypoplastic model for clays is discussed in detail in [87].
The constitutive equation in rate form reads:

T̊ = fsL : D + fsfdN‖D‖ (3.50)
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where:

L = 3
(

c1I + c2a
2T̂ ⊗ T̂

)

N = L :

(

−Y m

‖m‖

)

T̂ :=
T

trT
(3.51)

1 is the second–order identity tensor and I is the fourth–order identity tensor, with com-
ponents:

(I)ijkl :=
1

2
(1ik1jl + 1il1jk) (3.52)

In eq. (3.50), the functions fs(tr T) (barotropy factor) and fd(trT, e) (pyknotropy factor)
are given by:

fs = − trT

λ∗

(

3 + a2 − 2αa
√

3
)−1

fd =

[

− 2trT

3pr
exp

(

ln (1 + e) −N

λ∗

)]α

(3.53)

where pr is the reference stress 1 kPa. The scalar function Y and the second–order tensor
m appearing in Eq. (3.51) are given, respectively, by:

Y =

( √
3a

3 + a2
− 1

)

(I1I2 + 9I3)
(

1 − sin2 ϕc
)

8I3 sin2 ϕc
+

√
3a

3 + a2
(3.54)

in which:

I1 := trT I2 :=
1

2

[

T : T− (I1)
2
]

I3 := detT

and

m = − a

F

[

T̂ + T̂
∗ − T̂

3

(

6 T̂ : T̂ − 1

(F/a)2 + T̂ : T̂

)]

(3.55)

in which:

T̂
∗

= T̂ − 1

3
F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ (3.56)

tanψ =
√

3‖T̂∗‖ cos 3θ = −
√

6
tr
(

T̂
∗ · T̂∗ · T̂∗)

(

T̂
∗

: T̂
∗)3/2

(3.57)

Finally, the scalars a, α, c1 and c2 appearing in eqs. (3.51)–(3.55), are given as functions
of the material parameters ϕc, λ

∗, κ∗ and r by the following relations:

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc
α =

1

ln 2
ln

[

λ∗ − κ∗

λ∗ + κ∗

(

3 + a2

a
√

3

)]

(3.58)

c1 =
2
(

3 + a2 − 2αa
√

3
)

9r
c2 = 1 + (1 − c1)

3

a2
(3.59)

The model requires five constitutive parameters, namely ϕc, λ
∗, κ∗, N and r, state is

characterised by the Cauchy stress T and void ratio e.
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Appendix B

In this Appendix invertibility of the tensor A is discussed. Eq. (3.29) can be written with
help of Eqs. (3.51) and (3.53) as

A = −trT

λ∗

[

f∗s 3c1I − T̂ ⊗ 1 + f∗s 3c2a
2T̂⊗ T̂

]

= −trT

λ∗

[

f∗s 3c1I − T̂ ⊗ 1 + f∗s
[

3a2 + 9(1 − c1)
]

T̂ ⊗ T̂
]

(3.60)

with

f∗s =
(

3 + a2 − 2αa
√

3
)−1

> 0 (3.61)

for any realistic values of a and α. Eq. (3.60) can be also written as

A = −trT

λ∗

[

C1I − T̂ ⊗ 1 + C2T̂ ⊗ T̂
]

(3.62)

with C1, C2 being scalar constants calculated from model parameters.

C1 =
2

3r
and C2 =

2a2 + 6(1 − c1)

3rc1
(3.63)

To study the invertibility condition of A, it is sufficient to consider tensor A
∗ = −λ∗A/trT

(only trT < 0 is allowed). In the principal stress components the determinant of A∗ reads

detA∗ = C3
1 − C2

1

[

(T̂1 + T̂2 + T̂3) − C2(T̂
2
1 + T̂ 2

2 + T̂ 2
3 )
]

(3.64)

Inversion of the tensor A is possible if det A∗ 6= 0. Because C1 6= 0 and T̂1 + T̂2 + T̂3 = 1,
this condition reads

C1 − 1 + C2(T̂
2
1 + T̂ 2

2 + T̂ 2
3 ) 6= 0 (3.65)

Taking into account definitions of scalars C1 and C2 (3.63) and the fact that for compressive
stresses 1/3 < (T̂ 2

1 + T̂ 2
2 + T̂ 2

3 ) < 1, we find that the invertibility of A is not guaranteed if

1

3

[

2a2 + 6(1 − c1)

c1

]

< (3r − 2) <
2a2 + 6(1 − c1)

c1
(3.66)

A detailed study of the condition (3.66) reveals that for reasonable values of material
parameters the tensor A is invertible. For example for London clay parameters (Tab.
3.1) the condition (3.66) reads 3.31 < −0.8 < 9.94. The invertibility of A may not be
guaranteed for unrealistically low values of the ratio (λ∗ − κ∗)/(λ∗ + κ∗).
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Chapter 4

Directional response of a
reconstituted fine-grained soil:
Performance of different
constitutive models

4.1 Introduction

The directional character of the mechanical response of fine-grained soils, i.e., its depen-
dence on the loading direction, has been the subject of several studies throughout the last
decades, including both experimental and theoretical investigations. On the experimental
side, some pioneering contributions were provided in the early seventies, see e.g., Refer-
ences [81, 147]. Notable examples of more recent contributions can be found in the works
of Graham et al. [48], Atkinson et al. [6], Smith et al. [123] and Callisto and Calabresi
[20]. On the theoretical side, a major improvement of classical plasticity as applied to clays
has been provided by the introduction of the so-called nested-surface kinematic hardening
theories of plasticity, originating from the works of Prevost [113], Mróz et al. [102] and
Hashiguchi [57]. These latter studies were essentially motivated by the need of improving
available design approaches for those practical applications where soil is subject to cyclic
loading conditions, e.g., earthquakes, offshore engineering, etc.

Later studies on shear banding in soils as a bifurcation problem [121, 115] showed the need
to take into account the incrementally non-linear character of the material response – i.e.,
a dependence of soil tangent stiffness on the strain rate direction, see, e.g., References
[39, 132] – and motivated the development of a class of constitutive theories which depart
from the framework of plasticity and rather can be seen as a generalization of Truesdell
theory of hypoelasticity [137]. A distinctive feature of this approach is the absence of any
kinematic decomposition of strain rates into reversible and irreversible parts. An important
example in this respect is provided by the theory of hypoplasticity, as defined by Kolymbas
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[77], see also Reference [80].

More generally, it turns out that a proper description of soil behavior as a function of
loading direction not only is useful for modelling the response of geotechnical structures
to cyclic loading or for analyzing localization phenomena, but it is also a key ingredient in
the analysis of any geotechnical structure where different zones of soil experience widely
different stress-paths, both in size and direction, e.g., deep excavations and tunnels. This
has been demonstrated in a number of practical applications, see, e.g. References [124, 146,
45, 140].

The objective of this work is to assess, both qualitatively and quantitatively, the perfor-
mance of some advanced constitutive models in reproducing the stress-strain behavior of
a soft, normally consolidated reconstituted clay as observed in laboratory tests performed
along a number of different stress-paths originating from a common initial state. Two par-
ticular classes of inelastic models have been selected for the comparison. On the one hand,
the three-surface kinematic hardening model proposed by Stallebrass [125]; Stallebrass
and Taylor [127] has been chosen as the representative candidate of modern soil plasticity
approaches. On the other hand, three different versions of hypoplasticity have been con-
sidered, which differ from each other in terms of history-related state variables, namely the
CLoE model [29], the clay K-hypoplastic model recently proposed by Maš́ın [87], and a
modified version of this last model, embedding the concept of intergranular strain [108] as
additional internal state variable. Finally, the classical critical-state Modified Cam-Clay
model with associative flow rule [117] has been also considered as a reference.

The companion paper by Costanzo et al. [31] presents the results of a large program of
stress-probing tests on normally consolidated, reconstituted Beaucaire Marl. These results
are used herein both for the calibration of the different models, and as a benchmark for
the evaluation of the models performance. The results obtained from standard isotropic or
triaxial compression and extension tests, starting from an isotropic state, were used for the
calibration of the different models. The assessment of models’ performance was carried out
with reference to a different set of data, obtained from axisymmetric stress-probing tests
starting from an anisotropic initial stress state.

The outline of the paper is as follows. The details of the experimental program are shortly
recalled in Sect. 4.2. A summary of the main features of the constitutive models considered
is provided in Sect. 4.3. The procedures adopted for the calibration of the different models
are thoroughly discussed in Sect. 4.4, before presenting the comparison between predicted
and observed directional response, in Sect. 4.5, where a quantitative assessment of the
performance of the models is attempted by introducing suitable scalar measures of the
prediction error. Finally, some concluding remarks are drawn and perspectives for further
research are provided in Sect. 4.6.

In the following, the usual sign convention of soil mechanics (compression positive) is
adopted throughout. In line with Terzaghi’s principle of effective stress, all stresses are
effective stresses, unless otherwise stated. Both direct and index notation will be used to
represent tensor quantities, according to convenience. Calligraphic letters are used to rep-
resent fourth-order tensors and their components (e.g., L and Lijkl). In the representation
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of stress and strain states, use is sometimes made of the following invariant quantities:
p := (1/3) tr σ (mean stress); q :=

√

(3/2) ‖dev(σ)‖ (deviatoric stress); ǫv := tr ǫ (volu-
metric strain); and ǫs :=

√

(2/3) ‖dev(ǫ)‖ (deviatoric stress).

4.2 Experimental data from stress-probing tests

The material tested is a low plasticity silty clay, with a liquid limit of 38%, and a plas-
ticity index of 17%. The stress-probing tests were performed on reconstituted material,
consolidated in a large consolidometer up to a nominal vertical effective stress of 75 kPa.
Full details of the experimental procedures employed in the testing program are given by
Costanzo et al. [31]. Overall, the measurement system is capable of resolving strains of
approximately 0.0005.

The testing program consisted of a large number of drained stress probes, starting from a
common initial stress state and pointing in different directions in the triaxial plane. Two
different initial stress states were considered: the first one (state A) is located on the
isotropic axis at p = 150 kPa; the second one (state B) is characterized by the same mean
stress as state A and a deviator stress q = 60 kPa. Both states A and B were reached upon
stress-controlled consolidation along a constant q/p path (q/p = 0 for state A, q/p = 0.4
for state B). Each stress probe from an initial state (σa0, σr0) is described by the following
parametric equations:

∆σa := σa − σa0 = Rσ sinασ (4.1)
√

2 ∆σr :=
√

2σr − σr0 = Rσ cosασ (4.2)

where Rσ = ‖∆σ‖ denotes the norm of the stress increment, and ασ represents its direction
in the Rendulic plane of stress increments (∆σa :

√
2∆σr, see Fig. 4.1a). Each stress probe

was continued up to a Rσ value corresponding either to a ”failure” state, or to a prescribed
maximum value of the cell pressure. The loading directions ασ prescribed for each probe
are listed in Tab. 4.1. Note that for each initial state the testing program included as
particular cases conventional triaxial, constant p and isotropic, compression and extension
paths. The stress probe direction in the q : p plane, αpqσ , calculated from the stress invariant
increments ∆ p and ∆ q as:

∆ p =
1

3
(∆σa + 2∆σr) ∆ q = ∆σa − ∆σr (4.3)

sinαpqσ =
∆ q

√

(∆ p)2 + (∆ q)2
cosαpqσ =

∆ p
√

(∆ p)2 + (∆ q)2
(4.4)

is also reported in the same table. A picture of the stress paths originating from initial
state B in the q : p plane is shown in Fig. 4.2.
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Figure 4.1: Response envelope concept: a) input stress probes; b) output strain envelope.

Test Initial ασ αpqσ Test Initial ασ αpqσ
# state (deg.) (deg.) # state (deg.) (deg.)

Tx124 A 0 303.69 Tx118 B 0 303.69
Tx128 A 35 0.00 Tx115 B 35 0.00

— — — — Tx130 B 46 21.91
Tx121 A 90 71.57 Tx132 B 90 71.57
Tx126 A 126 90.00 Tx119 B 126 90.00

— — — — Tx116 B 154 104.49
Tx123 A 180 123.69 — — — —
Tx127 A 215 180.00 Tx134 B 215 180.00

— — — — Tx129 B 226 201.91
Tx122 A 270 251.57 Tx117 B 270 251.57
Tx125 A 305 270.00 Tx113 B 305 270.00

Table 4.1: Details of the experimental stress-probing program, after Costanzo et al. [31].
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4.3 Constitutive models considered

4.3.1 The 3–SKH model

The 3–SKH model is an advanced example of the kinematic hardening plasticity models
originating from the pioneering work of Prevost [113] and Mróz et al. [102]. The model is
based on the principles of critical state soil mechanics and represents an evolution of the
classical Modified Cam-Clay model [117], and the two-surface kinematic hardening model
proposed by Al Tabaa and Wood [1]. The main feature of the 3–SKH model consists in
the introduction of an additional kinematic history surface - as defined in Reference [125],
see Fig. 4.3 - motivated by experimental findings about the influence of the recent stress
history on soil behavior [6]. While kinematic hardening models are capable of dealing
with cyclic loading conditions and, more generally, of reproducing the observed non-linear
behavior inside the state boundary surface, 3–SKH model provides significantly improved
predictions in the small strain range, see [127]. Successful applications of this model at
both the single-element level and in the analysis of typical boundary value problems are
reported, e.g., by Grant et al. [49], Ingram [65], Baudet [7] and Maš́ın [86]. The general
formulation of the 3–SKH model is given in Appendix B.

4.3.2 The CLoE hypoplastic model

The origins of CLoE hypoplasticity — where the acronym CLoE stands for Consistan-
ce et Localisation Explicite — can be traced back to the pioneering work of Chambon
and Desrues on strain localization in incrementally non-linear materials [28, 43]. The
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Figure 4.3: Sketch of the characteristic surfaces of the 3–SKH model

constitutive equation is given, in rate-form, by:

σ̇ = A(σ)ǫ̇ + b(σ) ‖ǫ̇‖ (4.5)

see Reference [29]. The first term on the right-hand side yields an incrementally linear
response, while the second accounts for incremental non-linearity via a linear dependence
on the norm of the strain rate tensor. To keep the formulation as simple as possible, the
set of state variables for the material is limited to the Cauchy stress tensor.

An essential feature of CLoE model is that the constitutive response in stress space is
bounded by an explicitly assumed limit surface, separating admissible from impossible
stress states. The particular form adopted for the limit surface is given by the equation
proposed by van Eekelen [138], which allows for different values of friction angle in com-
pression and extension. When the stress state reaches the limit surface, it is explicitly
assumed that no outer stress rate response can be generated by any applied strain rate
(consistency condition).

The two constitutive tensors A and b appearing in (4.5) are homogeneous functions of
degree one of the stress tensor, for which no explicit expression is assumed. Rather, A and
b are obtained via an interpolation procedure based on the assigned material responses
at some suitably defined image points, located along special loading paths (basic paths).
These are selected among those stress-paths that are experimentally accessible by means
of conventional laboratory tests. The consistency condition at limit states implies a series
of additional requirements for the components of A and b, see Reference [29]. Details on
the basic paths and on the constitutive functions employed to represent the stress-strain
behavior of the soil along them will be given when detailing the calibration procedure.
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4.3.3 The K-hypoplastic model for clays

The K-hypoplastic model considered in the present study has been recently developed by
Maš́ın [87] with the specific aim of describing the behavior of fine-grained soils. The model
combines the mathematical structure of K-hypoplastic models – see e.g., Reference [153]
and references therein – with key concepts of critical state soil mechanics [122] through the
notion of generalised hypoplasticity, as defined by Niemunis [106]. In fact, the model can
be considered an evolution of both von Wolffersdorff [141] model for sands, and the more
recent Herle and Kolymbas [61] model for soils with low friction angles

The constitutive equation is given, in rate-form, by:

σ̇ = fsL : ǫ̇ + fsfdN ‖ǫ̇‖ (4.6)

Explicit, closed form expressions for the two tensors L(σ) and N (σ) and for the scalar
functions fs(p) and fd(p, e) are provided in Appendix B. It must be noted that, although
Eq. (4.6) and (4.5) appear quite similar, a major difference of K-hypoplasticity as compared
to CLoE stems from including void ratio in the set of state variables for the material
through the so-called pyknotropy factor fd [53]. It is precisely this ingredient which allows
the critical state concept to be incorporated in the constitutive equation. A more general
comparison between the two frameworks of CLoE- and K-hypoplasticity can be found in
Reference [133].

4.3.4 The K-hypoplastic model for clays with intergranular strain

The K-hypoplastic model discussed in the previous section is capable of predicting the
behavior of fine-grained soils upon monotonic loading at medium to large strain levels. In
order to prevent excessive ratcheting upon cyclic loading and to improve model perfor-
mance in the small-strain range, its mathematical formulation has been enhanced by the
intergranular strain concept [108].

The mathematical formulation of this enhanced version of the K-hypoplastic model for
clays is given by:

σ̇ = M (σ, e, δ,η) : ǫ̇ (4.7)

where M is the fourth-order tangent stiffness tensor of the material, η := ǫ̇/ ‖ǫ̇‖ denotes
the strain rate direction, and the additional state variable δ is a symmetric second order
tensor called intergranular strain. Full details of the mathematical structure of the model
are provided in appendix B.

In this formulation, the total strain can be thought of as the sum of a component related
to the deformation of interface layers at integranular contacts, quantified by δ, and a
component related to the rearrangement of the soil skeleton. For reverse loading conditions
(η : δ̂ < 0, where δ̂ is defined in Appendix B) and neutral loading conditions (η : δ̂ = 0), the
observed overall strain is related only to the deformation of the intergranular interface layer
and the soil behaviour is hypoelastic, whereas in continued loading conditions (η : δ̂ > 0)
the observed overall response is also affected by particle rearrangement in the soil skeleton.
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From a mathematical standpoint, the response of the model is determined by interpolating
between the following three special cases:

σ̇ = mRfsL : ǫ̇ (η : δ̂ = −1 ∧ δ = 0) (4.8)

σ̇ = mT fsL : ǫ̇ (η : δ̂ = 0) (4.9)

σ̇ = fsL : ǫ̇ + fsfdN ‖ǫ̇‖ (η : δ̂ = 1) (4.10)

the last case corresponding to the so-called swept-out-memory conditions [55]. The quan-
tities mR and mT appearing in Eqs. 4.8 and 4.9 are material constants. The particular
structure adopted for the constitutive tensor L [87] should allow, in principle, to get a
good performance in both the very small and large strain ranges.

4.4 Model calibration

When comparing the performance of different constitutive models in predicting the ob-
served directional response of the material, particular care must be taken in the proper
selection of the procedure adopted for their calibration. In the present case, this task is
somewhat made easier by the fact that all the constitutive models discussed in the previ-
ous section, with the only exception of the CLoE hypoplastic model, incorporate the basic
principles of Critical State Soil Mechanics, and thus some of the material constants share
the same physical meaning.

In order to separate the data used for the calibration of the five models considered and the
data used for the evaluation of their performance, the material constants of each model
have been determined from the results of the stress probes starting from the isotropic initial
state A. This is also consistent with the procedure typically used in practical applications,
where most of the experimental data provided by the site investigation refer to isotropically
consolidated, drained or undrained triaxial tests.

For some of the constitutive models considered, the available data from stress probes at
point A do not provide enough information to calibrate all the relevant constants. This is
the case, for example, of the material parameters controlling the response of the 3–SKH or
K-hypoplastic models upon load reversal in the very small strain range. In such cases, the
choice has been made to evaluate such material constants based on the experience gathered
in previous experimental investigations on similar soils. Although such a choice necessarily
introduces a certain degree of subjectivity in the comparative evaluation of the model
responses, it can still be considered acceptable for our purposes, considering that the typical
range of variation of such parameters for different soils is relatively limited, and the model
response is not very sensitive to their variation, see e.g., References [108, 125, 65, 30, 86].

It is important to note that, although the initial conditions of all the specimen belonging
to a single stress probing “rosette” were nominally identical, some small differences in their
initial effective stress and void ratio have been observed for both initial states A and B. In
all the simulations discussed in this and in the next section, the average values reported in
Tab. 4.2 have been assumed.
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p0 q0 e0
(kPa) (kPa) (–)

State A 147.3 0.0 0.746
State B 148.4 60.0 0.752

Table 4.2: Initial conditions assumed for the two sets of stress-probing tests

4.4.1 Modified Cam-Clay model

In the Modified Cam-Clay model, the parameters N , and λ provide the position and the
slope of the isotropic virgin compression line in the (1 + e):ln p plane, while the constant
κ represents the slope of isotropic unloading/reloading lines in the same plane. Those
constants have been determined using the results of the isotropic compression and extension
probes, Tx128 and Tx127, as shown in Fig. 4.4a.

The value of the friction angle at critical state, ϕc, has been determined from the results
of all the stress probes leading the material to failure (Tx121–Tx126). In Fig. 4.4b, these
results are plotted in terms of mobilized friction angle

ϕmob := sin−1

{

σ1 − σ3

σ1 + σ3

}

as a function of the deviatoric strain norm |ǫs|. From the figure it is apparent that critical
state conditions are attained at approximately the same friction angle in all the probes
considered. From the results shown in the figure, a value of ϕc = 33◦ has been selected.
The critical state stress ratio in triaxial compression, M , can be easily determined from ϕc
by considering that

M =
6 sinϕc

3 − sinϕc

The elastic shear modulus G was evaluated by trial and error, starting from the results of
the p = const. compression probe (Tx126), as shown in Fig. 4.4c. From the results shown
in the figure, a value of G = 5 MPa was adopted. The complete set of parameters for the
Modified Cam-Clay model is summarized in Tab. 4.3.

N λ κ M G
(–) (–) (–) (–) (MPa)

2.245 0.097 0.017 1.33 5.0

Table 4.3: Parameters of the Modified Cam-Clay model.

As for the initial conditions, it is worth noting that, due to the creep strains accumulated
before the stress probing, the average e0 value assumed for the specimens (reported in
Tab. 4.2) is slightly lower than the void ratio on the virgin compression line calculated
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Figure 4.4: Calibration of the Modified Cam-Clay model: a) determination of parameters
N , λ and κ from isotropic compression and extension probes; b) determination of critical
state friction angle ϕc, from probes leading to failure; c) determination of elastic shear
modulus, G, from the p = const. compression probe.
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for p = p0 with the N and λ values given in Tab. 4.3. Therefore, the initial value of the
preconsolidation pressure pc0 (i.e., the size of the elliptical yield locus along the isotropic
axis) is slightly larger than p0 and the soil appears as slightly overconsolidated (“quasi-
preconsolidation” effect). The value of pc0 consistent with the assumed position of the
virgin compression line and initial void ratio can be computed by the following equation:

1 + e0 = N − λ ln pc0 + κ ln
pc0
p0

(4.11)

with p0 and e0 provided by Tab. 4.2 and N , λ and κ as in Tab. 4.3.

4.4.2 3–SKH model

In the 3–SKH model, the material constants λ∗ and N∗ define the slope and position of
the virgin compression line in the ln(1 + e):ln p plane. Their numerical values have been
determined by interpolating the experimental data from the isotropic compression probe,
Tx128, shown in Fig. 4.4a.

According to eq. (4.34)2 of Appendix B, the constants A, m and n quantify the dependence
of the elastic shear modulus G on mean effective stress p and preconsolidation pressure
2a (size of the Bounding Surface along the isotropic axis). Due to the lack of reliable
information on the influence of such state variables on G, the values for the constants m
and n have been set equal to those provided by Maš́ın [86] for London Clay. The constant
A was determined by comparing the shear stiffness value predicted by eq. (4.34)2 with the
tangent shear moduli measured in a number of deviatoric probes (Tx121–Tx123, Tx125

and Tx126) at very small strain levels. These tangent shear moduli are plotted in Fig. 4.5a
as a function of the deviatoric strain. From the figure, it is apparent how the experimental
data in the very small strain range (ǫs < 1.0 · 10−4) are quite scattered, due to the lack
of accurate strain measurements. For the purpose of model calibration, the average value
A = 653 was selected, which is well inside the range of values reported for similar soils.

The constant κ∗ controls the value of the bulk modulus of the material in the elastic range,
see eq. (4.34)3. In principle, it could be determined from the isotropic extension probe,
Tx127, as the slope of the tangent to the unloading curve in the ln(1+e):ln p plane at very
small volumetric strains. However, due to the lack of accurate volume change measurements
in the very small strain range, κ∗ was determined from the elastic shear stiffness, as:

κ∗ =
p

K
=

3(1 − 2ν)

2(1 + ν)

p

G

by assuming a value of the Poissons ratio ν = 0.25, at p = 150 kPa.

The parameter M , controlling the slope of the Critical State Line for axisymmetric com-
pression in the q:p plane can be assumed equal to 1.33, as for the Modified Cam-Clay
model. No ad-hoc experimental tests were performed to calibrate the parameters T and S.
Therefore, in lack of sufficient information and since the values reported in the literature
for these two constants lie in a very narrow range – see References [125, 7, 65, 86] – the
values determined by Maš́ın [86] for London Clay were adopted.
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Figure 4.5: Calibration of the 3–SKH model: a) determination of parameter A from devi-
atoric probes; b) determination of parameter ψ from the p = const. compression probe.

The last material constant of the model – namely the exponent ψ appearing in the expres-
sion of the hardening moduli H1 and H2, eq. (4.51) – was determined by trial and error,
by comparing the model response with the experimental results obtained in the p = const.
compression probe Tx126. From the results shown in Fig. 4.5b, a value of ψ = 1.0 has
been considered appropriate.

The complete set of parameters for the 3–SKH model is summarized in Tab. 4.4.

N∗ λ∗ A n m κ∗ M T S ψ

0.85 0.057 653 0.71 † 0.27 † 0.004 1.33 0.24 † 0.16 † 1.0

Table 4.4: Parameters of the 3–SKH model. Quantities indicated with the symbol † have
been assumed from data reported by Maš́ın [86] for London Clay.

The definition of the initial conditions requires the determination of the initial values of
the internal variable a – controlling the size of the elliptic Bounding Surface, see eq. (4.38)
– and of the two back-stresses, σa and σb, defining the centers of the yield surface and
history surface, respectively (see Fig. 4.3).

As previously discussed in sect. 4.4.1, the initial state of the material appears to be slightly
overconsolidated due to the quasi-preconsolidation effect induced by creep strains. In
defining the initial value of the parameter a, this effect can be easily taken into account
by fixing the position of the virgin compression line of the material. From the expressions
of the virgin compression and unloading/reloading curves in the ln(1 + e):ln p plane, the
following relation between a and the initial void ratio e0 and mean stress p0 can be derived:

ln (1 + e0) = N − λ∗ ln 2a+ κ∗ ln
2a

p0
(4.12)

Eq. (4.12) can be solved for a, with p0 and e0 provided by Tab. 4.2 and N∗, λ∗ and κ∗ as
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Figure 4.6: Effect of initial position of kinematic hardening surfaces on the directional
response of 3–SKH model. a) Initial positions of kinematic surfaces assumed for Cases (1)
and (3); Strain response envelopes for axisymmetric probes from initial state A, and Rσ =
50 kPa.

in Tab. 4.4.

On the contrary, it is not clear how the back stresses σa and σb should evolve with creep
strain. This introduces some uncertainty in the definition of the initial conditions, which
must be considered in the evaluation of the model predictions. In order to assess the
potential effect of the assumed initial conditions on the predicted directional behavior of
the model, three possible scenarios were considered:

• Case 1: History surface and yield surface touch each other at the current stress state,
and are both located at its left, as shown in Fig. 4.6a;

• Case 2: History surface and yield surface both centered about the current stress state:
σ = σa = σb;

• Case 3: History surface is in contact with the Bounding Surface at the isotropic stress
state p = 2a; yield surface touches the current stress state and is located at its right,
as shown in Fig. 4.6a;

The strain response envelopes obtained for Cases 1–3 under axisymmetric probes with Rσ
= 50 kPa, starting from initial state A, are shown in Fig. 4.6b. While the results obtained
for Cases (2) and (3) are almost coincident, some quantitative differences are apparent
between the response envelopes for Cases (1) and (2). This is due to the fact that, in Case
(1), plastic loading conditions with relatively low values of the plastic modulus occur even
at very small strain levels in all the probes characterized by a net increase in mean stress p,
whereas in the other two cases the response of the material in the very small strain range
is always elastic or almost elastic.

In the following, the assumption made in Case (1) – i.e., that the quasi–preconsolidation
due to creep affects only the sizes of the three surfaces, but not the position of history
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Figure 4.7: Initial configuration assumed for the kinematic surfaces of 3–SKH model: a)
initial state A; b) initial state B. Stress probe directions are also shown in the figures.

and yield surfaces with respect to the current stress state – has been assumed both for the
calibration of the 3–SKH model and for the simulation of the stress probing experiments
from state B, discussed in Sect. 4.5. The initial configuration assumed for the kinematic
surfaces for states A ad B is shown in Fig. 4.7. Note that, while the state A appears as
slightly overconsolidated, according to the value of the average initial void ratio reported
in Tab. 4.2, the state B lies on the Bounding Surface. The initial configuration of the
kinematic hardening surfaces at state B, shown in Fig. 4.7b, is the only possible under
the assumption of Case (1), due to the non-intersection condition. However, it is worth
recalling that Clayton and Heymann [30] report experimental evidence showing an initially
stiff, “elastic” behavior after some period of rest.

4.4.3 CLoE hypoplastic model

As discussed by Chambon et al. [29], the calibration of the CLoE model requires experi-
mental data from some prescribed “basic paths”, including:

i) conventional drained triaxial compression and extension;

ii) isotropic compression or extension;

iii) “pseudo-isotropic” (i.e., isotropic loading from an anisotropic stress state) compres-
sion and extension.

Four of these basic paths are included among the stress probes originating from the isotropic
initial state A (Tx121, Tx122 and Tx127 or Tx128). As for the pseudo-isotropic tests,
use was made of the results of the stress probe Tx115, originating from the initial state
B. This is the only case in which some information from the stress-probing experiments
conducted from the anisotropic state B was used in the calibration process.
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The various constants of the CLoE model cannot be evaluated directly from the experi-
mental results, since care must be taken in preserving the consistency of the constitutive
tensors at isotropic states and on the limit surface, which bounds the region of admissible
stress states in stress space. Rather, a complex calibration procedure must be followed
in order to obtain a consistent set of parameters, see Reference [29] for details. In this
case, the calibration procedure was carried out using a specifically designed software tool,
kindly provided by Desrues [42]. The results of the calibration process are summarized
in Tab. 4.5, providing the complete set of parameters adopted in the simulations with the
CLoE model.

ϕc c χca yca yrc pfc pref ǫv,ref λc ϕe
(deg) (kPa) (–) (–) (–) (–) (kPa) (–) (–) (deg)

34.0 0 0.17 0.055 3.1 0 147.26 0.0 183.34 33

χd χc χm2 ye pfe mc me
† n † ω †

(–) (–) (–) (–) (–) (–) (–) (–) (–)

-1.0 -0.1 -0.05 0.011 0.02 -0.2 0.0 -0.2 0.36

Table 4.5: Parameters of the CLoE model. Quantities indicated with the symbol † have
been estimated according to Desrues [42].

The comparison between model predictions and material response observed on the calibra-
tion paths is shown in Fig. 4.8. The model provides a fairly good match with experimental
results for all calibration paths, with the only exception of the isotropic compression path
(Fig. 4.8c), for which the model significantly underestimates the compressibility of the soil.
This clear limitation is due to the fact that, in its current version, the model does not allow
to prescribe independently the bulk and shear tangent moduli (in both compression and
extension) at isotropic states, see Reference [92]. A change in the bulk stiffness in isotropic
compression is reflected in the deviatoric response, so that any attempt to improve the
model response in isotropic compression would unavoidably deteriorate the performance
of the model along the other paths. The set of parameters shown in Tab. 4.5 was taken
as the best possible compromise in terms of predictive capability of the model along the
entire set of basic paths.

4.4.4 K-hypoplastic models for clays

A detailed discussion of the procedures required for the calibration of the K-hypoplastic
model for clays can be found in Reference [87]. The standard version of the model is fully
characterized by five constitutive constants, namely N∗, λ∗, κ∗, ϕc and r.

The constants N∗ and λ∗ control the position and slope of the isotropic normal compression
line in the ln(1 + e):ln p plane. As such, they have the same physical meaning as the
corresponding constants of the 3–SKH model (Sect. 4.3.1), and can be determined as
discussed in Sect. 4.4.2. For the determination of the constant κ∗ – which controls the
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Figure 4.8: Calibration of the CLoE model: comparison of predicted and observed re-
sponse for: a) conventional triaxial compression and extension tests, in the σa/σr:ǫa plane;
b) conventional triaxial compression and extension tests, in the ǫv:ǫa plane; c) isotropic
compression and extension probes, in the ln(1+ e):ln p plane; d) pseudo-isotropic compres-
sion test, in the ∆ǫa/∆ǫr : q/p plane.
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Figure 4.9: Calibration of the K-hypoplastic model for clays: comparison of predicted and
observed response for: a) isotropic compression and extension tests, in the ln(1 + e):ln p
plane; b) constant p triaxial compression, in the q:ǫs plane.

compressibility of the soil in isotropic unloading – the choice has been made to use the
results of the stress probe Tx127 in the medium strain range. A reasonably good fit to
the available experimental data was obtained with κ∗ = 0.007, as shown in Fig. 4.9a.

The constant ϕc defines the friction angle of the material in critical state conditions. Its
determination has been already discussed in Sect. 4.4.1. The last constant, r, controls the
ratio between shear and bulk stiffness in isotropic virgin states. It was calibrated by trial
and error, by comparing the model response with the experimental data from the stress
probe Tx126, i.e., a constant p compression test from the isotropic virgin state A. The
best fit between predictions and measurements was obtained with r = 0.4, see Fig. 4.9b.

The extension of the K-hypoplastic model to include the effects of previous loading history
by means of the intergranular strain concept requires five additional constants to be iden-
tified, namely mR, mT , R, βr and χ (see Reference [108]). In principle, their calibration
requires experimental data from non-conventional laboratory experiments involving com-
plex loading paths – such as those considered by Atkinson et al. [6] in the experimental
evaluation of the effects of recent stress history – and small-strain stiffness measurements
using dynamic testing techniques. Such experiments are not included in the experimental
program considered in this study. However, as suggested by Maš́ın [87], the constants R,
βr and χ, which provide the extent of the quasi-elastic range for the material and the
stiffness degradation rate with increasing strain, typically show a relatively limited range
of variation for different soils, and therefore have been estimated with reference to the
experimental data available for London Clay [86].

The constant mR, which controls the hypo-elastic stiffness upon stress path reversal in the
very small strain range, was estimated by means of the following relation between mR and
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the small-strain shear modulus G0 in isotropic conditions [87]:

G0 ≃ mRp

rλ∗
⇔ mR ≃ G0rλ

∗

p
(4.13)

with G0 = 23.0 MPa at p = 150 kPa, see Fig. 4.5a. This guarantees that the enhanced
K-hypoplastic model and the 3–SKH model are characterized by identical shear stiffnesses
in the very small strain range. Finally, in the absence of any other experimental indication,
mT was assumed equal to mR. The results of the calibration process are summarized in
Tab. 4.6.

N∗ λ∗ κ∗ ϕc r mR mT R βr χ
(–) (–) (–) (deg) (–) (–) (–) (–) (–) (–)

0.85 0.057 0.007 33.0 0.4 3.5 3.5 10−4 † 0.2 † 6.0 †

Table 4.6: Parameters of the K-hypoplastic models for clays. Quantities indicated with
the symbol † were assumed from data reported by Maš́ın [86] for London Clay.

The definition of the initial conditions requires the determination of the initial values of
the void ratio and of the intergranular strain tensor δ. As for the void ratio, the values
provided in Tab. 4.2 were adopted. Note that, with the values of N∗ and λ∗ given in
Tab. 4.6, the void ratio assumed for the isotropic state A is slightly lower than the void
ratio on the virgin compression line at the same mean stress. This implies that the material
appears slightly overconsolidated, as already noted in Sect. 4.4.2. The initial values of the
intergranular strain for the two states A and B were determined by numerically simulating
the two constant q/p compression paths imposed to the material before the start of the
stress-probing. This guarantees that the initial values of δ are consistent with the initial
configuration of the kinematic surfaces in the 3–SKH model.

4.5 Comparison of observed and predicted response

4.5.1 Strain response envelopes

In the following, the response of reconstituted Beaucaire Marl to the stress probing program
detailed in Tab. 4.1, as well as the predictions of the different models described above, is
depicted by using the so-called incremental strain response envelope, as defined in Reference
[133]. Such a representation directly follows from the concept of stress response envelope,
first proposed by Gudehus [50] as a convenient tool for visualizing the properties of rate-type
constitutive equations. According to Gudehus, a stress (strain) response envelope is defined
as the image in the stress (strain) rate space of the unit sphere in the strain (stress) rate
space, under the map defined by the constitutive equation. By simply replacing rates with
finite-size increments, the same definitions apply to the incremental response envelopes.
In the general case, an incremental strain response envelope (RE, hereafter) is a surface
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in a six-dimensional space. However, for the particular loading conditions considered, the
most natural choice is to represent the section of the REs in the plane of work-conjugated
strain increment quantities, (∆ǫa,

√
2 ∆ǫr), see Fig. 4.1b. The size of each strain increment

vector defining the RE can be directly interpreted as a directional secant compliance of the
material, for the associated loading direction and stress increment magnitude.

Figures 4.10 and 4.11 show the computed REs for all the models considered at small to
medium stress increment levels (Rσ = 20, 30, 40 and 50 kPa), and at medium to large stress
increment levels (Rσ = 50 and 90 kPa), respectively. The corresponding experimentally
obtained REs are also shown in both figures on the top left corner.

For small to medium stress increment levels, the experimental REs indicate that the softest
response is associated with those paths which are characterized by a large deviatoric com-
ponent (e.g., tests Tx119 and Tx113). As Rσ increases, the envelopes progressively shift
upward to the left, due to the fact that the initial state is closer to the critical state line
for axisymmetric compression than to the corresponding line for axisymmetric extension.
For η = 0.4 loading paths (Tx130 and Tx129), the material response is softer when the
probe points in the direction of continued loading, and stiffer upon unloading (i.e., upon
full stress path reversal with respect to the consolidation history). In fact, this last path
corresponds to the stiffest response of the material. A direct consequence of the above
observations is that the experimental REs are markedly non-symmetric about the origin
of the strain increment space.

The predictions of the different models considered appear, from a qualitative standpoint,
all in fair agreement with the salient features of the experimental response discussed above.
The only notable exception is represented by the predictions of CLoE model upon η = 0.4
loading paths, where – contrary to experimental evidence – no significant difference between
secant stiffness in compression and extension is observed. From a quantitative standpoint,
however, all models appear to significantly underpredict the secant stiffness of the material.
The REs predicted with the two elastoplastic models show a convex shape, except for the
expected, yet minor irregularity of the Modified Cam-Clay envelopes, close to neutral
loading in extension. The REs of the two K-hypoplastic models, and (to a much lesser
extent) those of CLoE show some degree of non-convexity in a region located around the
η = 0.4 loading direction. This feature is also shown by the two largest experimental REs,
although such an observation is based on the results of one single stress-probe.

At large stress increment level (Rσ = 90 kPa, Fig. 4.11), both the elastoplastic and the
K-hypoplastic models provide response envelopes which appear in fairly good agreement
with the experimental results, from both a qualitative and a quantitative point of view.
On the contrary, CLoE significantly overestimates soil stiffness for loading paths close to
deviatoric compression (Tx116 and Tx119).

4.5.2 Normalized stress-paths

In addition to response envelopes, the performance of the five models can be also assessed
by representing the prescribed stress paths in the normalized plane q/p∗e : p/p∗e, where p∗e
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Figure 4.10: Experimental vs. simulated strain response envelopes for Rσ = 20, 30, 40 and
50 kPa
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Figure 4.11: Experimental vs. simulated strain response envelopes for Rσ = 50, and 90
kPa
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is the equivalent pressure, given by:

p∗e := exp

{

N − 1 − e

λ

}

for Modified Cam-Clay; (4.14)

p∗e := exp

{

N∗ − ln(1 + e)

λ∗

}

otherwise. (4.15)

Figure 4.12 shows such normalized stress-paths for both the constitutive models and the
actual experiments. For the latter, the equivalent pressure was evaluated using eq. (4.15).

For the two elastoplastic models, the normalized stress-paths clearly define a single limit
surface – of nearly elliptic shape – in the normalized plane, due to the isotropic volumetric
hardening law adopted to describe the evolution in size of the Bounding Surface of the
material (coinciding with the yield surface for the Modified Cam-Clay model). It is worth
noting that the initial portion of the experimental stress-paths Tx115, Tx130 and Tx132

show a sharp bend which can be attributed to a quasi-preconsolidation effect similar to
the one observed for the initial state A. This effect is not captured by the two elastoplastic
models, due to an inadequate characterization of the initial state.

Interestingly, the response predicted by the two K-hypoplastic models is quite satisfactory
when compared to the experimental data, although no such concept as a Bounding Surface
is introduced in their formulation. The appearance of a state boundary surface in the model
predictions is, in this case, a combined effect of the assumed barotropy and pyknotropy
functions, which endow this particular version of K-hypoplasticity with a single critical
state line and a unique virgin isotropic compression line [97].

The response of CLoE model is somewhat different from that of all the other models
considered in two respects. First, although the response along essentially deviatoric stress
paths (probes Tx116, Tx119, Tx132, Tx117 and Tx113) is in reasonable agreement with
the data, the normalized stress paths do not converge towards a unique point, which is
consistent with the absence of the concept of a critical state line in the model formulation.
Second, the performance of CLoE appears quite poor for stress-paths in the region bounded
by probes Tx118 and Tx130. This is due to the same factors which originate the problems
observed when calibrating the model response along a purely isotropic compression path.

4.5.3 Accuracy of directional predictions

While the strain response envelopes plotted in Figs.4.10 and 4.11 provide a clear qualitative
picture of the performance of the five models considered, a more quantitative comparison
of model predictions can be obtained by introducing a suitable scalar measure of the “dis-
tance” between model response and experimental results.

Herein, the following quantities have been adopted. Let the quantities αpqσ denote the
orientation of the generic stress probe of size Rσ in the q:p plane, and let the stress probe
be subdivided into N increments, of length ∆Rσ = Rσ/N . Then, for each model, the
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Figure 4.12: Experimental vs. simulated stress paths in the normalized plane q/p∗e:p/p
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e.
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simulation error err(αpqσ , Rσ) can be defined as:

err(αpqσ , Rσ) =
N
∑

k=1

∥

∥

∥
∆ǫ

(k)
sim − ∆ǫ(k)

exp

∥

∥

∥
(4.16)

where ∆ǫ
(k)
exp and ∆ǫ

(k)
sim are the measured and predicted strain increment tensors, respec-

tively, corresponding to the k-th stress increment of size ∆Rσ.

To assess the relative size of the prediction error, as compared to the strain-path length, a
second, normalized error measure is introduced as follows:

errnorm(αpqσ , Rσ) =
err(αpqσ , Rσ)
∑N

k=1

∥

∥

∥
∆ǫ

(k)
exp

∥

∥

∥

(4.17)

Figures 4.13 and 4.14 show computed values of err and errnorm as a function of the probe
direction αpqσ . Two stress increment ranges have been considered, namely Rσ = 30 kPa
(Fig. 4.13) and Rσ = 90 kPa (Fig. 4.14). In both cases, the evaluation of the two error
measures has been carried out with ∆Rσ = 5 kPa, which was considered to be the smallest
stress increment for which experimental results are not significantly affected by scatter in
the measurements.

For Rσ = 30 kPa, the performance of the two elastoplastic models is compared in Fig. 4.13a.
The largest prediction error, err ≃ 0.006, corresponds to probe directions with αpqσ around
72◦ (conventional triaxial compression). This is a consequence of the fact that, while
the initial state for the two models lies on the Bounding Surface, the experimental data
clearly indicate that the soil possesses some degree of overconsolidation (see Fig. 4.12),
probably induced by creep strains accumulated during the rest period before probing.
The best predictions, in absolute terms, are obtained in the range 200◦ < αpqσ < 300◦.
This is not surprising, since in this region the response of the two models is quite stiff,
hence the strain increment magnitudes are quite small. The effect of loading direction
is less important when considering the relative error, errnorm, as this quantity accounts
for the dependence of soil stiffness on loading direction. The two models provide almost
identical predictions for the entire range of probing directions, except for the zone in which
Modified Cam-Clay undergoes elastic unloading (200◦ < αpqσ < 300◦). Again, this is to
be expected, since when the initial state is on the Bounding Surface, the 3–SKH model
behaves as a standard Modified Cam-Clay for all probes which are directed outwards. On
the contrary, when the stress-probes are directed inwards, then the more evoluted nested
surface kinematic hardening structure of the 3–SKH model is capable of reproducing much
better the experimental response, in both absolute and relative terms.

For the same stress increment range, the performance of the hypoplastic models is shown
in Fig. 4.13b. The computed absolute error distributions with probe direction are quite
similar, both in shape and magnitude, to those of the two elastoplastic models. The
same is also true, to a certain extent, for the normalized error. The response of the two
K-hypoplastic models is almost coincident for those probes corresponding to continued
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Figure 4.13: Scalar error measures with respect to the stress-path direction αpqσ in the p:q
plane at state B, Rσ = 0 − 30 kPa
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loading conditions, as in this case the material reaches quite rapidly the swept-out-memory
conditions. Under reverse loading conditions, the two responses diverge and, as expected,
the K-hypoplastic model with intergranular strains performs significantly better. This is
even more apparent when considering the normalized error plots. For the same range of
probe directions, CLoE performance appears to be substantially poorer, both in absolute
and relative terms. On the contrary, for continued loading conditions (340◦ < αpqσ <
90◦) CLoE provides the best results among all the models considered. In fact, this is a
consequence of a fortuitous combination of two different factors. On the one hand, CLoE
calibration has clearly shown that the model is not capable of correctly reproducing the
large decrease in stiffness associated with virgin loading upon isotropic or η = const. loading
conditions. On the other hand, the actual response of the material for the same range of
probing directions appears to be much stiffer than expected for a material in a virgin state,
due to the quasi-preconsolidation effect already mentioned.

Overall, data reported in Fig. 4.13 indicate that the best performance is provided by the 3–
SKH model and the K-hypoplastic model with intergranular strains, which appear to yield
quite similar results in terms of prediction error measures. A somehow different picture
emerges by looking at the results for the larger stress increment range (Fig. 4.14). In this
case, not only the relative error levels are generally lower, but also the differences between
the models are less important. In fact, Modified Cam-Clay performs almost as well as the
more refined 3–SKH model, and the same applies to all the hypoplastic models, except for
loading directions close to αpqσ = 180◦. In this case, roughly corresponding to a reduction
of mean stress at q = const., CLoE performance is quite poor, while K-hypoplasticity with
intergranular strain provides the best prediction among the models of this class, although
not as good as those of the two elastoplastic models.

4.6 Concluding remarks

The comparative evaluation of the performance of different constitutive models in their
application to the quantitative solution of practical engineering problems is a very complex
task, which – in general – requires a careful consideration of several key factors, among
which we recall:

1. Qualitative and quantitative agreement between experimentally observed response
and model predictions at the element level (i.e., in the simulation of laboratory
tests), in view of the main objectives of the analysis and the type of problem to be
solved;

2. Relative complexity of the procedures required to determine the material constants
appearing in the model formulation;

3. Type and nature of the internal state variables entering the model to describe the
effects of previous loading history, and the relative complexity in the characterization
of their initial values;
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4. Availability of robust and accurate algorithms for the numerical implementation in
FE codes, in view of the solution of the engineering problems at hand.

The comparison between model predictions and experimental results is typically done, in
practice, with reference to a limited number of more or less conventional stress paths,
whereas the response of the material for different loading conditions is extrapolated in a
more or less reasonable way. This can be quite sufficient to assess the model performance
in those problems where most of the soil affected by the imposed loading conditions under-
goes very similar stress paths, and one of such paths is included in the laboratory testing
program. Unfortunately, this is only seldom the case in many important applications where
an accurate prediction of soil-structure interaction processes and of the displacement field
around the structure is required. Notable examples in this respect are provided by deep
excavations and shallow tunnels to be realized in urban environments, as in such cases,
different zones of soil experience widely different stress-paths, both in size and direction,
and the quality of numerical predictions crucially relies on the ability of the constitutive
model adopted for the soil to accurately reproduce the material response along all such
loading paths.

In this paper, an attempt has been made to evaluate the response of different advanced
constitutive models for fine-grained soils in more general terms, considering their predic-
tive capabilities over a quite wide range of loading conditions. In trying to compare the
performances of the different models, the experimental data of Costanzo et al. [31] have
been considered as portraying the actual mechanical response of the soil. However, two
main points should be stressed in this respect. First, due to the time required to perform
each test, only a few probes were duplicated, and thus most of the data on which the
experimental REs are constructed refer to a single specimen only. Therefore, the observed
shape of the experimental REs might be affected to some extent by the unavoidable scatter
always present in experimental measurements. Second, the occurrence of small amounts of
viscous strains may affect both size and shape of the measured response envelopes, even
if to a limited extent, see Reference [31]. Interpreting the observed response in light of
rate-independent constitutive theories might therefore lead to an underestimation of soil
stiffness for some probe directions and to an overestimation of soil stiffness for other probe
directions, as thoroughly discussed in the companion paper [31].

Based on the normalized stress paths reported in Sect. 4.5.2 and the scalar error measures
introduced in Sect. 4.5.3, the best performance overall appears to be provided by the
intergranular strain-enhanced K-hypoplastic model for clays and the 3–SKH model, at
both small and large strain levels.

It is interesting to note that, since the soil considered in this study was in a (almost)
normally consolidated state, the predictions of the classical Cam-Clay model for continued
loading conditions (i.e., those paths pointing outside the yield surface) are equivalent to
those obtained with the much more sophisticated 3–SKH model. In unloading, however,
the data clearly show the substantial improvement of predictions which can be achieved
with the kinematic hardening approach.
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As compared to its enhanced version, the performance of the standard K-hypoplastic model
is still reasonably good, mainly because the loading programmes considered involve only
a very limited number of stress reversals. For the application to monotonic (or quasi-
monotonic) loading conditions, the standard K-hypoplastic model may represents a valid
alternative to more complex formulations.

On the contrary, the performance of the CLoE model is definitely poor, when compared
with the other elastoplastic or hypoplastic models, particularly for those loading paths
involving a significant increase in mean stress. This is not surprising, considering that CLoE
is a first-generation hypoplastic model, in which the stress tensor is assumed as the only
state variable for the material. For this reason, the mathematical structure of CLoE model
does not allow to properly distinguish normally consolidated and overconsolidated states,
and to correctly describe critical state failure conditions. While CLoE has demonstrated
its capability of accurately modelling the response of coarse-grained soils along mainly
deviatoric loading paths (see, e.g., Reference [29]), these limitations obviously make it
unfit to model the behavior of natural clay deposits. An attempt to modify the current
version of CLoE in order to improve its performance for normally consolidated clays has
been recently presented by Maš́ın et al. [92].

Although the enhanced K-hypoplastic model and the 3–SKH model provide a great flex-
ibility in describing the effects of recent stress history on the mechanical response of the
soil, they are both characterized by a relatively limited number of constants, most of which
are linked to standard features of clay behavior. All the constants appearing in these two
models can be determined by means of standard laboratory tests, with the only exception
of those controlling the stiffness of the material at very low strain levels. As discussed by
Maš́ın [87], these latter quantities can be easily determined from the results of dynamic
tests, such as bender element or resonant column tests.

On the contrary, the CLoE model requires a much wider pool of experimental data to cali-
brate the large number of constants (19) appearing in the functions adopted to describe the
material response along the selected basic paths. Moreover, as those parameters typically
control more than one specific feature of the material response, they cannot be determined
independently. Rather, they have to be found by means of a complex calibration procedure
which has to be implemented numerically in a suitable calibration code. This represents a
second, major drawback of the CLoE model as compared to the more recent K-hypoplastic
models for clays.

The characterization of the initial state of the material is relatively easy for Modified Cam-
Clay, CLoE and standard K-hypoplastic models, for which only the initial values of the
stress tensor and (possibly) one additional scalar state variable (preconsolidation pressure
or void ratio) are required. Defining the initial state is more complex for the enhanced
K-hypoplastic model and the 3–SKH model, since it requires the determination of one or
two tensorial internal variables (the back-stresses or the intergranular strain). Even in
the simple case considered in this study, this has not been a trivial task. The difficulties
experienced in the definition of the initial state have had an impact both on the results of
the calibration procedures and on the prediction of the material response. It is reasonable
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to expect that such difficulties would increase in the application of those models to natural
clay deposits, with a more complicated – and possibly unknown – previous loading history.
In such a case – based on some experimental observations of Jardine et al. [67] and Clayton
and Heymann [30], who report an increase in soil stiffness for all loading directions after a
relatively short resting period – Niemunis and Herle [108] suggest to assume δ = 0. This
is equivalent to setting σa = σb = σ for the 3–SKH model.

Finally, as far as computational issues are concerned, it can be noted that robust and
accurate implicit or explicit integration algorithms are now available for both complex
plasticity models (see, e.g., [16, 119, 84]) and advanced hypoplastic models (see, e.g.,
[44, 40]). However, as the mathematical structure of the K-hypoplastic models appears
simpler than that of the 3–SKH model, or of any other kinematic hardening multisurface
plasticity model, the former may have some advantage with respect to the latter as far as
their numerical implementation into existing FE codes is concerned.

Appendix A

The results of all the stress-probing tests from the anisotropic initial state B, along with
the corresponding predictions for the five models considered, are summarized in Figs. 4.15
(q : ǫs plane) and 4.16 (p : ǫv plane). Note that all strain measures are evaluated as natural
strains.

Appendix B: Mathematical formulation of the constitutive
models

In the description of the relevant constitutive equations, the following invariant quantities
for the stress tensor are used:

p :=
1

3
σ : 1 q :=

√

3

2
s : s cos(3θ) := −

√
6

tr
(

s3
)

(s : s)3/2
(4.18)

where s = σ − p1 is the deviatoric part of the stress tensor and 1 is the second-order
identity tensor. Use is made of the fourth-order identity tensor I , with components:

(I)ijkl :=
1

2
(δikδjl + δilδjk) (4.19)

K-hypoplastic model for clays

The mathematical structure of the K-hypoplastic model for clays is discussed in detail in
Reference [87]. The constitutive equation in rate form reads:

σ̇ = fsL : ǫ̇ + fsfdN ‖ǫ̇‖ (4.20)
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Figure 4.15: Experimental and predicted responses in the q:ǫs plane.

where:

L := 3
(

c1I + c2a
2σ̂ ⊗ σ̂

)

N = L :

(

Y
m

‖m‖

)

σ̂ :=
1

3p
σ (4.21)
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Figure 4.16: Experimental and predicted responses in the p:ǫv plane.
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In eq. (4.20), the functions fs(p, e) (barotropy factor) and fd(e) (pyknotropy factor) are
given by:

fs =
3p

λ∗

(

3 + a2 − 2αa
√

3
)−1

fd =

{

2p exp

[

ln (1 + e) −N

λ∗

]}α

(4.22)

The scalar function Y and second-order tensor m appearing in eq. (4.21) are given, respec-
tively, by:

Y =

( √
3a

3 + a2
− 1

)

(I1I2 + 9I3)
(

1 − sin2 ϕc
)

8I3 sin2 ϕc
+

√
3a

3 + a2
(4.23)

in which:

I1 := tr(σ) I2 :=
1

2

[

σ : σ − (I1)
2
]

I3 = detσ

and:

m = − a

F

[

σ̂ + dev σ̂ − σ̂

3

(

6σ̂ : σ̂ − 1

(F/a)2 + σ̂ : σ̂

)]

(4.24)

in which:

F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ tanψ :=

√
3 ‖dev σ̂‖ (4.25)

Finally, the scalars a, α, c1 and c2 appearing in eqs. (4.21)–(4.24), are given as functions
of the material parameters ϕc, λ

∗, κ∗ and r by the following relations:

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc
α =

1

ln 2
ln

[

λ∗ − κ∗

λ∗ + κ∗

(

3 + a2

a
√

3

)]

(4.26)

c1 =
2
(

3 + a2 − 2αa
√

3
)

9r
c2 = 1 + (1 − c1)

3

a2
(4.27)

The model requires five constitutive parameters, namely ϕc, λ
∗, κ∗, N and r.

Integranular strain enhancement of K-hypoplasticity

As proposed by Niemunis and Herle [108], the enhanced K-hypoplastic model is endowed
with an additional state variable, δ, a second-order tensor defined as intergranular strain,
which can be interpreted as a macroscopic manifestation of intergranular slips at grain
contacts.

Let ρ := ‖δ‖ /R be a suitable normalized magnitude of δ, R being a scalar model parameter.
Also, let

δ̂ =

{

δ/‖δ‖ for δ 6= 0
0 for δ = 0

(4.28)

denote intergranular strain direction. The constitutive equations for enhanced K-hypoplasticity
for clays can be written as:

σ̇ = M : ǫ̇ (4.29)
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where the fourth-order tangent stiffness tensor M is calculated from the constitutive ten-
sors tensors L and N defined in eq. (4.21), the barotropy and pyknotropy factors given in
eq. (4.22), and the intergranular strain tensor via the following interpolation:

M = [ρχmT + (1 − ρχ)mR] fsL + B (4.30)

where:

B :=

{

ρχ (1 −mT ) fsL : δ̂ ⊗ δ̂ + ρχfsfdN ⊗ δ̂ (δ̂ : ǫ̇ > 0)

ρχ (mR −mT ) fsL : δ̂ ⊗ δ̂ (δ̂ : ǫ̇ ≤ 0)
(4.31)

and χ, mT and mR are material constants.

The evolution equation for the intergranular strain tensor δ is given by

δ̇ =

{
(

I − δ̂ ⊗ δ̂ρβr

)

: ǫ̇ (δ̂ : ǫ̇ > 0)

ǫ̇ (δ̂ : ǫ̇ ≤ 0)
(4.32)

As compared to the basic K-hypoplastic model for clay, the enhanced model requires five
additional parameters, namely R, mR, mT , βr and χ.

3-SKH model

The 3–SKH model is a nested-surface kinematic hardening plasticity model developed as an
extension of classical Modified Cam-Clay. The original formulation is detailed in Reference
[125]. Herein, the version proposed by Stallebrass and Taylor [127] is considered. The
evolution equation for the effective stress tensor is given by:

σ̇ = D
e : (ǫ̇ − ǫ̇p) (4.33)

where ǫ̇ is the plastic strain rate tensor and De is the elastic tangent stiffness tensor,
defined by:

D
e :=

(

K − 2

3
G

)

1 ⊗ 1 + 2GI
G

pr
= A

(

p

pr

)n
( p

2a

)m
K =

p

κ∗
, (4.34)

In the above equations, the scalar quantity a is an internal variable to be defined later, pr
is a reference stress (set equal to 1.0 kPa), and A, n and m are model parameters.

Nonlinearity and irreversibility are introduced by requiring the stress state to belong to
the convex set (known as elastic domain):

Eσ :=
{

(σ, a,σb)
∣

∣

∣
f (σ, a,σb) ≤ 0

}

(4.35)

where f(σ, a,σb) is the yield function of the material, given by:

f(σ, a,σb) =
1

2

[

( q̄b
M

)2

+ p̄2
b − T 2S2a2

]

(4.36)
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In eq. (4.36), the scalar functions p̄b and q̄b are the first and second invariants of the tensor
(σ−σb), defined as in eq. (4.18); σb and a are internal variables, providing the coordinates
of the centers of the yield surface and of the Bounding Surface (see eq. (4.38)), respectively,
and M, T and S are model parameters.

Inside the yield surface, ǫ̇p = 0. For stress states on the yield surface, the plastic strain
rate is given by the following associative flow rule:

ǫ̇p =
〈P : De : ǫ̇〉

H + P : De : P
P P :=

∂f

∂σ
(4.37)

where H is the plastic modulus and the operator 〈x〉 := (x + |x|)/2 denotes the positive
part of any scalar function x.

A key characteristic of the 3–SKH model is the definition of two additional surfaces in
stress space. The first one, known as Bounding Surface, is given by:

F (σ, a) =
1

2

[

( q

M

)2
+ p2 − 2pa

]

(4.38)

and limits the kinematic hardening of the yield surface. The second surface, called history
surface, is given by:

fh(σ, a,σa) =
1

2

[

( q̄a
M

)2

+ p̄2
a − T 2a2

]

(4.39)

where σa is an additional tensorial internal variable, and the scalar functions p̄a and q̄a are
the first and second invariants of the tensor (σ − σa).

The evolution equation for the scalar internal variable a is given by:

ȧ =
a

λ∗ − κ∗
ǫ̇p : 1 (4.40)

where κ∗ and λ∗ are material constants. The kinematic hardening rules for the two back-
stress tensors are given as follows:

1. Plastic loading conditions with fh < 0 and F < 0

In this case, we have:

σ̇a =
ȧ

a
σa σ̇b =

ȧ

a
σb + Żsγ (4.41)

where:

γ =
σ − σb

S
+ σa − σ (4.42)

Żs =
1

P : γ

{

P :

(

σ̇ − ȧ

a
σb

)

− T 2S2aȧ

}

(4.43)
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2. Plastic loading conditions with fh = 0 and F < 0

In this case, we have:

σ̇a =
ȧ

a
σa + Ẇsβ (4.44)

where:

β =
σ − σb

TS
+ a1− σ − σb

S
− σa (4.45)

Ẇs =
1

P : β

{

P :

(

σ̇ − ȧ

a
σa

)

− T 2S3aȧ

}

(4.46)

The center of the yield surface, σb is now calculated explicitly from the non-intersection
condition, as:

σb = σ − S(σ − σa) (4.47)

3. Plastic loading conditions with fh = 0 and F = 0

In this case, both back-stresses σa and σb can be obtained in closed form from the
non-intersection condition, as:

σa = σ − T (σ − a1) σb = σ − TS(σ − a1) (4.48)

The plastic modulus H is given by

H = h0 +H1 +H2 (4.49)

where:

h0 = −P :

[

1

λ∗ − κ∗
(

−T 2S2a2 − P : σb
)

]

(4.50)

H1 = S2

(

b1
b1max

)ψ a3

λ∗ − κ∗
; H2 =

(

Tb2
b2max

)ψ a3

λ∗ − κ∗
(4.51)

b1 =
β : P

TSa
; b2 =

γ : P

TSa
(4.52)

b1max = 2a (1 − T ) ; b2max = 2Ta (1 − S) (4.53)

The 3-SKH model requires 10 model parameters – namely λ∗, N∗, A, n, m, κ∗, M , T , S and
ψ – and the definition of the initial conditions for 13 state variables, i.e., the components
of the tensors σa and σb and the scalar quantity a.
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Chapter 5

An evaluation of constitutive
models to predict the behaviour of
fine-grained soils with different
degrees of overconsolidation

5.1 Introduction

It has been recognised since the development of critical state soil mechanics in 1960’s that
realistic constitutive models should consider void ratio e as a state variable. This approach,
in theory, allows to use a single set of material parameters to predict the behaviour of soils
with a broad range of overconsolidation ratios and thus simplifies practical application
of constitutive models. As a matter of fact, however, qualitatively correct predictions
of behaviour of soils with different OCRs based on a single set of material parameters
do not necessarily imply satisfactory performance from the quantitative point of view.
An engineer aiming to apply the constitutive model for solution of practical geotechnical
problems should be aware of the range ofOCRs for which a single set of material parameters
may be used and design an experimental program accordingly.

In the present paper, performance of three constitutive models of different complexity is
evaluated on the basis of triaxial tests by Hattab and Hicher [58]. Reconstituted kaolin
clay was isotropically consolidated up to pmax = 1000 kPa and swelled to a mean effective
stress p = pmax/OCR, with overconsolidation ratios ranging from 1 to 50. From this state
a shear phase with constant mean stress p followed up to failure.
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5.2 Constitutive models

Modified Cam clay model (CC) has been chosen as a reference for comparison with two
advanced constitutive models based on different mathematical backgrounds, namely the
three surface kinematic hardening model (3SKH), and a hypoplastic model for clays (HC).

Modified Cam clay model [117] is a basic critical state soil mechanics model. In this work
a version which complies with Butterfield’s [18] compression law is used, thus the isotropic
virgin compression line reads

ln(1 + e) = N − λ∗ ln(p/pr) (5.1)

with parameters N and λ∗ and a reference stress pr = 1 kPa. Slope of the isotropic
unloading line is controlled by the parameter κ∗, constant shear modulus G is assumed
inside the yield surface and the critical state stress ratio is characterised by parameter M .

The 3SKH model [127] is an advanced example of the kinematic hardening plasticity models
for soils. The model, which may be seen as an evolution of the CC model, is characterised
by two kinematic surfaces in the stress space (see Fig. 5.1), which determine the extent of
the elastic behaviour (yield surface) and the influence of the recent stress history (history
surface).

sa
sb

aa p

q

Ta

TSa

bounding surface

history surface

yield surface

Figure 5.1: Characteristic surfaces of the 3-SKH model, from Maš́ın et al., 2006.

Parameters N , λ∗, κ∗ andM have the same meaning as in the CC model, the shear modulus
inside the elastic range G is calculated from

G

pr
= A

(

p

pr

)n

OCRm (5.2)
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with parameters A, n and m. Parameters T and S characterise relative sizes of kinematic
surfaces (Fig. 5.1). The last parameter ψ controls the rate of decay of both bulk and shear
moduli for states at the yield surface, inside bounding surface (Fig. 5.1).

A hypoplastic constitutive model for clays was proposed by Maš́ın [87] and investigated
further by Maš́ın and Herle [97]. It combines the mathematical formulation of hypoplastic
models (e.g., Reference [77]) with the basic principles of the CC model. The rate formula-
tion is governed by a single non-linear equation

σ̇ = fsL : ǫ̇ + fsfdN ‖ǫ̇‖ (5.3)

with constitutive tensors L and N and scalar factors fs and fd, no switch function is
introduced to distinguish between loading and unloading and strains are not sub-divided
into elastic and plastic parts as in elasto-plasticity.

The model requires five parameters with a similar physical interpretation as parameters of
the CC model. N and λ∗ are coefficients in the Butterfield’s [18] compression law (5.1), κ∗

controls the slope of the isotropic unloading line in the ln(1 + e) vs. ln(p/pr) space, ϕc is
the critical state friction angle. The last parameter r determines the shear modulus. Due
to non-linear character of Eq. (5.3), the parameter r is usually calibrated by means of a
parametric study, similarly to the parameter ψ of the 3SKH model.

5.3 Scalar error measure

A scalar error measure has been introduced in order to asses model performance in the pre-
failure regime and in order to eliminate a high amount of subjectivity of model calibration.

The suitable error measure should reflect differences in both predicted and observed stiff-
nesses and strain path directions. As experiments and simulations are characterised by
identical stress paths, simulation error is measured in the strain space. Let the pre-failure
part of the stress path be subdivided into L increments, of length ∆q = qmax/L. Then,
following Maš́ın et al. [99], the simulation error can be defined as

err(OCR, qmax) =

L
∑

k=1

∥

∥

∥
∆ǫ

(k)
sim − ∆ǫ(k)

exp

∥

∥

∥

∑L
k=1

∥

∥

∥
∆ǫ

(k)
exp

∥

∥

∥

(5.4)

where ∆ǫ
(k)
exp and ∆ǫ

(k)
sim are the measured and predicted strain increment tensors, respec-

tively, corresponding to the k–th stress increment of size ∆q.

In order to demonstrate the meaning of the numerical value of err, it is plotted for two
special cases in Fig. 5.2. First, experiment and simulation with identical strain path direc-

tions and different incremental stiffnesses (measured by their ratio α = ‖∆ǫ
(k)
exp‖/‖∆ǫ

(k)
sim‖

from (5.4), i.e. α = Gsim/Gexp = Ksim/Kexp, where G and K are shear and bulk moduli
respectively) are considered. In the second case experiment and simulation are charac-
terised by identical incremental stiffnesses (α = 1), but different directions of the strain
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paths measured by the angle ψǫ in the Rendulic plane of ǫ (ǫa vs.
√

2ǫr, where ǫa and ǫr
are axial and radial strains respectively). Investigation of (5.4) reveals that err = |1−1/α|
for the first case and err = |2 sin(∆ψǫ/2)| for the second one (with ∆ψǫ = ψǫ sim−ψǫ exp).
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70450-45
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Figure 5.2: Numerical values of err for experiments and simulations that differ only in
incremental stiffnesses (left) and strain path directions (right).

Calculation of err is complicated by the scatter in experimental data, in particular for low
p (high OCR). For calculating of err the data were approximated by polynomial functions
of the form

ǫs = asq
bs + csq

ds + esq
fs . . . (5.5)

and
ǫv = avq

bv + cvq
dv + evq

fv . . . (5.6)

with coefficients as, bs, cs, ds, es, fs . . . and av, bv, cv, dv, ev, fv . . . . In this way a good
fit of experimental data was achieved, as demonstrated in Fig. 5.3 for an experiment with
OCR = 10.
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Figure 5.3: Approximation of experimental data for OCR = 10 by a polynomial function.
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In the present work, for all simulations qmax from (5.4) is chosen such that qmax = 0.7qpeak,
where qpeak is the peak deviator stress achieved in the particular experiment. L in (5.4) is
high enough so it does not influence calculated err (typically L = 100 was used).

5.4 Calibration

The parameters of the studied constitutive models can be roughly split into two groups.
In one group are parameters with a clear physical meaning, which are calibrated by stan-
dardized calibration procedures. On the other hand, parameters from the second group are
less clearly defined and their calibration is more subjective. These parameters are usually
found by means of parametric studies.

5.4.1 The first group of parameters

In the present work, parameters from the first group were calibrated only once and their
values were kept constant for all simulations.

To this group belong parameters N , λ∗ and κ∗, which were found by evaluation of an
isotropic loading and unloading test, as demonstrated for the CC model in Fig. 5.4. Note
that the numerical values of the parameter κ∗ (Tab. 5.1) differ for the three constitutive
models. In the 3SKH model κ∗ specifies a bulk stiffness in the small strain range and it was
calculated from an assumed Poisson ratio (accurate volumetric measurements in the small
strain range were not available). In the HC model the slope of the isotropic unloading line
is for higher OCRs influenced also by the non-linear character of the hypoplastic equation.
For this reason κ∗ of the HC model could be considered to belong to the second group of
parameters. However, as it has only minor effect on predictions of constant p experiments
(which are in scope of this study), its value was kept constant for all simulations. An
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 (
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λ*
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κ*=0.0175

experiment

Figure 5.4: Calibration of parameters N , λ∗ and κ∗ of the CC model.
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approximate average value of the critical state friction angle from all shear experiments
available was used to calculate the parameter M (ϕc).

The 3SKH model requires five further parameters that control the behaviour in the small
strain range and the influence of the recent history (A, n, m, T and S). Data by Hattab
and Hicher [58] do not contain experiments required for their calibration. However, as
similar soil (Speswhite kaolin) was used by Stallebrass and Taylor [127], the additional
parameters of the 3SKH model were taken over from their work.

5.4.2 The second group of parameters

These parameters, namely G (CC), r (HC) and ψ (3SKH), influence significantly results
of constant p experiments in the pre-failure regime and their calibration is to some extent
subjective. In order to eliminate this subjectivity, these parameters were found by mini-
mizing the scalar error measure err defined in Sec. 5.3. This procedure was applied on
constant p experiments at OCR = 1 and OCR = 10, so two sets of material parameters
(optimised for OCR = 1 and OCR = 10) were obtained (Tab. 5.1).
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Figure 5.5: Calibration of ψ by means of minimalisation of err for experiment atOCR = 10.

Calibration of parameters from the second group is in the following demonstrated by means
of calibration of ψ using an experiment at OCR = 10.

Relation of err with respect to the value of ψ is shown in Fig. 5.5. The curve has a clear
minimum that corresponds to ψ = 2.53. This optimised value of ψ, together with two
different values, were used for simulation of the experiment at OCR = 10 (Fig. 5.6). In
the pre-failure regime the value of ψ found by optimisation with respect to err corresponds
quite well to the value that could have been chosen by means of a subjective trial-and-error
calibration procedure.

Parameters r and G were found using the same procedure as outlined above, a clear mini-
mum of err was obtained in all cases. The only difference was in the calibration of ψ for
OCR = 1, as the stress state of the 3SKH model is on the bounding surface and therefore
ψ does not influence model predictions. In this case ψ was found by trial-and-error by
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simulation of the isotropic unloading test from Fig. 5.4.

Table 5.1: Material parameters

M , ϕc λ∗ κ∗ N

CC 1.1 0.065 0.0175 0.918
HC 27.5◦ 0.065 0.01 0.918
3SKH 1.1 0.065 0.0034 0.918

A n m T S

3SKH 1964 0.65 0.2 0.25 0.08

G, r, ψ (OCR1) G, r, ψ (OCR10)

CC 7330 kPa 2210 kPa
HC 1.43 0.67
3SKH 2.3 2.53

5.5 Performance of the models

The two sets of parameters found in Sec. 5.4 were used in simulating experiments at
the whole range of OCRs. The initial states of p′, q and e measured in the experiments
were used in the simulations. In addition, the 3SKH model requires to specify the initial
positions of kinematic surfaces. These were aligned to reflect the stress history followed in
the experiments (Sec. 5.1).

The obtained scalar error measure err is plotted with respect to OCR in Fig. 5.7. From
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Figure 5.7: err for parameters optimised for OCR = 1 (top) and OCR = 10 (bottom).

this figure it appears that studied elasto-plastic and hypoplastic models have different
ranges of validity of different sets of material parameters:

1. Hypoplastic (HC) model performs for higher OCRs less correctly than other two
models when calibrated using data for OCR = 1. However, when calibrated at
higher OCR, it produces the best predictions out of all tested models for the entire
range of OCRs, with more-or-less constant value of err.

2. Elasto-plastic (CC and 3SKH) models calibrated at OCR = 10 perform relatively
correctly up to OCR ≈ 4. For lower OCRs parameters for normally consolidated
state lead to better predictions, but in the case of 3SKH still worst than predictions
by hypoplasticity.

By definition, the value of err characterises model predictions in the pre-failure regime only.
In order to evaluate predictions at failure, observed and predicted peak friction angles ϕp
were plotted with respect to OCR. The results were similar for both sets of parameters, Fig.
5.8 shows them for parameters optimised for OCR = 10. HC and 3SKH models predict
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Figure 5.8: Peak friction angles ϕp predicted by the models with parameters optimised for
OCR = 10.

peak friction angles relatively accurately (HC is more accurate for OCR ≤ 10, 3SKH for
OCR ≥ 20). CC model overestimates significantly ϕp for all states with OCR > 2. This
is a well-known shortcoming of the CC model, caused by the elliptical shape of the yield
surface.

While err gives a convenient quantitative measure of the model performance, it does not
specify the source of the prediction error. For qualitative comparison, the stress paths
normalised by the Hvorslev equivalent pressure p∗e are plotted for OCR = 10 optimised
parameters in Fig. 5.9a. Overprediction of ϕp by the CC model is clear, the shape of the
normalised stress paths is predicted relatively correctly by both HC and 3SKH models.
All models, however, overestimate dilation. Normalised stress paths of all models head
towards a unique critical state point, which has not been reached in the experiments at
higher OCRs (Fig. 5.9a top). A possible reason may be in localisation of deformation in
shear bands at higher OCRs.

q vs. ǫs graphs for OCR = 10 optimised parameters are shown in Fig. 5.9b. It is clear that
higher errors for low OCRs of elasto-plastic models, reflected in Fig. 5.7, are caused by
the underestimation of the shear stiffness in the case of CC and overestimation of the shear
stiffness in the case of 3SKH (with the exception of OCR = 1). Low prediction errors by
the HC model (Fig. 5.7) are reflected also in qualitatively correct performance shown in
Fig. 5.9b. Volumetric changes shown in Fig. 5.10 reveal a general trend of overestimation
of dilation for higher OCRs, as already discussed in the previous paragraph. The shape
of ǫv vs. ǫs curves is best predicted by the HC model. For high OCRs the 3SKH model
predicts dilatant behaviour immediately after the start of the shear phase, which has not
been observed in the experiments. On the other hand, hypoplasticity overestimates the
initial contraction for medium OCRs.
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Figure 5.9: Stress paths normalised by p∗e (a) and q vs. ǫs graphs (b) for OCR = 10
optimised parameters.

5.6 Concluding remarks

Results of this study must be seen as preliminary, as only one set of experimental data on
one particular soil was investigated. Presented results however show that at least two sets of
material parameters should be considered for both hypoplastic and elasto-plastic models.
It appears that the HC model requires a different set of material parameters only for
normally consolidated soil, a single set of parameters, which leads to accurate predictions
for a broad range of OCRs, is sufficient for OCR > 1. Two sets of parameters should also
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be used for studied elasto-plastic models, with the approximate limiting OCR ≈ 4.

It is perhaps not surprising that the two advanced models performed significantly better
than the CC model in predicting the non-linear behaviour in the pre-failure regime and
correctly estimating the peak friction angles for high OCRs. For higher OCRs the HC
model leads to better predictions than the 3SKH, both from the point of view of the scalar
error measure err and a qualitative performance expressed by the stress - strain diagrams.
Also, the 3SKH model can not be effectively calibrated to predict correctly the behaviour
of soils in normally consolidated state.
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Chapter 6

A hypoplastic constitutive model
for clays with meta-stable
structure

6.1 Introduction

Constitutive modelling of natural structured clays has observed a notable development in
past years. The research is driven by need for suitable design procedures, which would allow
a practising engineer to perform analyses which are reliable and safe, but still sufficiently
cheap. Apart from the accuracy in reproducing the soil behaviour, the model used for this
purpose should be easy to calibrate on the basis of laboratory experiments performed in a
standard experimental equipment available in practice. The main objective of the research
presented in this paper is to provide an advanced constitutive model for structured clays
that fulfills these requirements.

Most of the currently available constitutive models, which describe the destructuration pro-
cesses in natural clays are developed within the framework of elasto-plasticity and visco-
plasticity and may be seen as different extensions of the classical critical state model,
developed at Cambridge University in 1960’s [117]. This model is usually modified by
incorporating the second hardening law, which describes the progressive changes of struc-
ture of natural clay. The most simple models (such as the model by Liu and Carter [82])
do not assume any other alteration of the original model, Wheeler et al. [145] include
anisotropic effects by modifying the shape of the state boundary surface. These models,
however, are not capable of predicting non-linearity of behaviour of overconsolidated soils.
This shortcoming is overcome by more advanced models that make use of the kinematic
hardening plasticity [103], such as models from References [8, 118, 71, 46]. Different ap-
proaches to treat the behaviour of structured soils include the multilaminate framework
[37], visco-plasticity [116], and super/subloading yield surface approach [5]. A common
feature of these models is that the improvement in accuracy of predictions is often paid
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by an increase of complexity of calibration procedures and mathematical formulation, thus
reducing their suitability for application in a routine design.

In the text, the usual sign convention of soil mechanics (compression positive) is adopted
throughout. In line with the Terzaghi principle of effective stress, all stresses are effective
stresses. Common tensor notation (see, e.g., Reference [97]) is used.

6.2 Reference constitutive model

The theory of hypoplasticity [75, 77], developed independently at Universities of Karlsruhe
and Grenoble (see [133]), was in the past applied successfully in the development of con-
stitutive relations for granular materials [53, 141, 29]. More recently, the research focused
on the development of hypoplastic constitutive models for fine-grained soils [105, 54, 61]).
Maš́ın [87] proposed a new hypoplastic constitutive model for clays, which combines math-
ematical structure of hypoplastic models with the basic principles of the critical state soil
mechanics and the Modified Cam clay model. Predictive capabilities of this model, com-
pared with other advanced constitutive models, have been demonstrated, e.g., in References
[99, 56]. The hypoplastic model for clays will be used as a reference model for the proposed
modification.

The rate formulation of hypoplastic models is, in general [80], characterised by a single
equation [53]1

σ̇ = fsL : ǫ̇ + fsfdN ‖ǫ̇‖ (6.1)

where L and N are fourth- and second-order constitutive tensors respectively, fs is barotropy
factor that incorporates the influence of the mean stress and fd is a pyknotropy factor, which
controls the influence of the relative density (overconsolidation ratio). Cauchy stress σ and
void ratio e are considered as state variables. Complete mathematical formulation of the
reference model is given in Appendix.

The model requires five material parameters, namely ϕc, N , λ∗, κ∗ and r. ϕc is the critical
state friction angle. Parameters N and λ∗ define the position and shape of the isotropic
virgin compression line with the formulation according to Butterfield [18]:

ln(1 + e) = N − λ∗ ln

(

p

pr

)

(6.2)

where pr is the reference stress 1kPa. The parameter κ∗ determines bulk modulus at
overconsolidated states and the parameter r controls shear modulus. Although direct
calibration of parameters κ∗ and r is possible [87], it is suggested to determine their values
by means of parametric studies.

1To be more precise, the rate formulation of hypoplastic models reads σ̊ = fsL : D+ fsfdN ‖D‖, where
σ̊ is the objective stress rate and D the Euler’s stretching tensor. See, e.g., References [78, 14] for details.
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6.3 Conceptual approach for incorporation of structure ef-
fects into constitutive models

A conceptual framework for the behaviour of structured fine-grained soils was presented
by Cotecchia and Chandler [34]. They demonstrated that the influence of structure in
fine-grained soils can be quantified by the different sizes of the state boundary surfaces2 of
the structured and reference materials (Fig. 6.1), where as the reference material is usually
considered soil reconstituted under standard conditions [17]. Cotecchia and Chandler [34]
show that assuming a geometric similarity between the state boundary surfaces of natu-
ral and reference materials appears to be a reasonable approximation, although strongly
anisotropic natural soils may exhibit SBS which is not symmetric about the isotropic axis.

Figure 6.1: Framework for structured fine-grained materials (Cotecchia and Chandler 2000)

These observations are, in principle, applied in most of the currently available constitutive
models for structured soils. In general, at least one additional state variable describing the
effects of structure is needed, namely the ratio of sizes of SBSs of natural and reference
materials, referred to as ’sensitivity’ (s). s represents natural fabric and degree of bonding
between soil particles. The limit value usually characterise the reference soil (s = 1),
although higher values may be reasonable for soils with ’stable’ elements of structure caused
by natural fabric [8]. s is usually considered as a function of accumulated plastic strain.

2State boundary surface (SBS) is defined as a boundary of all possible states of a soil element in the
stress-void ratio space.
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6.4 Incorporation of structure effects into hypoplasticity

As opposed to the most elasto-plastic models, the mathematical formulation of hypoplastic
models does not include explicitly the state boundary surface. However, Maš́ın and Herle
[97] demonstrated that the model formulation allows us to derive an expression for the
so-called swept-out-memory (SOM) surface, which is a close approximation of the state
boundary surface.

They have shown that for any permitted stress state it is possible to calculate explicitly
the value of the pyknotropy factor fd on the swept-out-memory surface:

fd = ‖fsA−1 : N‖−1 (6.3)

where the fourth-order tensor A is expressed as

A = fsL − 1

λ∗
σ ⊗ 1 (6.4)

Equations (6.3) and (6.31) can be combined to find the expression for the Hvorslev equiv-
alent pressure p∗e for a given stress state σ on the swept-out-memory surface and thus to
determine the shape of the SOM surface in the normalised space σ/p∗e:

p∗e = 2p‖fsA−1 : N‖1/α (6.5)

where the Hvorslev equivalent pressure p∗e on the isotropic normal compression line is
defined as (from (6.2), Fig. 6.2)

p∗e = pr exp

[

N − ln(1 + e)

λ∗

]

(6.6)

Since the swept-out-memory surface is not given a priori, its shape is dependent on the
model parameters, namely ϕc and the ratio κ∗/λ∗. For parameters typical to fine-grained
soils its shape is similar to the state boundary surface of the Modified Cam clay model (see
Fig. 6.3 for different parameter sets).

As summarised in the Introduction, constitutive modelling of structured soils using the
framework of elasto-plasticity has recently undergone a notable development. Only few at-
tempts, however, have been made to incorporate structure effects into hypoplastic models.
Bauer and Wu [12, 13] enhanced the early version of the hypoplastic model for granular
materials [149], which considers Cauchy stress σ the only state variable, by the so-called
structure tensor S. The Cauchy stress σ is in the model replaced by the ”transformed
stress tensor” σt, defined as

σt = σ + S (6.7)

This transformation shifts the limit state locus in the stress space, thus enabling mod-
elling the cohesive behaviour of cemented materials. A suitable evolution equation for the
structure tensor S then allows us to simulate degradation of cementation bonds.

107



6.4. Structure effects in hypoplasticity Chapter 6. Modelling meta-stable structure

*λ

*κ

s=1SBS for

ln s
1

*λ

ln ppe
* pe

*s

N

current state

Isot. unl.

eln (1+   )

Current SBS, nat.1

ln s

Figure 6.2: On definitions of the sensitivity s, Hvorslev equivalent pressure p∗e and material
parameters N , λ∗ and κ∗.

A different approach for incorporating the structure effects into hypoplastic model is pro-
posed in the present work. Soil with stable structure (constant sensitivity) is considered
first, following Ingram [65]. As in the present work sensitivity s is measured along constant
volume sections through the state boundary surfaces (Fig. 6.2), the Hvorslev equivalent
pressure of the structured material is calculated by sp∗e (Fig. 6.2). It follows from the
expression of the SOM surface (Eqs. (6.3)-(6.6)) that the reference hypoplastic model may
be modified for clays with stable structure by a simple replacement of p∗e in the expression
for fd (see Eq. (6.31) in Appendix) by sp∗e:

fd =

(

2p

sp∗e

)α

(6.8)

Eq. (6.8) causes that the SBS of a natural soil is s times larger than the SBS of a cor-
responding reference material. It also follows from Fig. 6.2 that the normal compression
line of a natural soil is shifted along ln(1 + e) axis in the ln(1 + e) vs. ln p space by λ∗ ln s.
Additional enhancement by the transformed stress tensor σt (6.7) would shift the SBS
along the isotropic axis and thus would allow us to model true cohesive behaviour due to
cementation bonds [89]. For simplicity, the latter modification is omitted in this Note.

Second, the model is modified to predict the structure degradation. The proposed evolution
equation for sensitivity s reads (similarly to Baudet and Stallebrass [8])

ṡ = − k

λ∗
(s− sf )ǫ̇

d (6.9)

where k is a constitutive parameter that controls the rate of the structure degradation and
sf is the final sensitivity. The damage strain ǫ̇d is defined by

ǫ̇d =

√

(ǫ̇v)
2 +

A

1 −A
(ǫ̇s)

2 (6.10)
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Figure 6.3: SOM surface of the hypoplastic model for clays for five different sets of material
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with the parameter A, which controls the relative importance of the volumetric and shear
components (similarly to Rouiania and Wood [118]). Obviously, Eq. (6.10) does not allow
modelling purely deviatoric structure degradation process (A → 1). Nevertheless, the
research in References [118, 46, 23] indicate that the value of the parameter A may be for
most clays expected in the range (0 < A < 0.5).

In order to incorporate the variable sensitivity into the hypoplastic model, the barotropy
factor fs needs to be modified to ensure consistency between the model predictions and the
structure degradation law (6.9). Formulation of the model for the isotropic compression
from the isotropic normally compressed state is given by

ṗ = −
[

1

3 (1 + e)
fs

(

3 + a2 − 2αa
√

3
)

]

ė (6.11)

The isotropic normal compression line of the model incorporating structure reads (see Fig.
6.2)

ln(1 + e) = N + λ∗ ln s− λ∗ ln

(

p

pr

)

(6.12)

Time differentiation of (6.12) results in

ė

1 + e
= λ∗

(

ṡ

s
− ṗ

p

)

(6.13)

The isotropic formulation of the structure degradation law (6.9-6.10) is

ṡ =
k

λ∗
(s − sf )

ė

1 + e
(6.14)

Combination of (6.13) and (6.14) yields

ṗ

p
= −

[

s− k(s− sf )

λ∗s

]

ė

1 + e
(6.15)
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which may be compared with (6.11) to find an expression for the barotropy factor fs of the
new hypoplastic model:

fs = Si
3p

λ∗

(

3 + a2 − 2αa
√

3
)−1

(6.16)

with the factor

Si =
s− k(s− sf )

s
(6.17)

Thus the factor fs of the modified model reads fs = Sifsr, where fsr is the barotropy factor
of the reference model (see Eq. (6.30) in Appendix).

It follows from (6.1) that the factor fs controls the directional tangential stiffness of material
(in terms of response envelopes [50] it controls their size). Therefore, the decrease of the
stiffness in isotropic compression to ensure consistency with the structure degradation
law (Eqs. (6.11)-(6.17)) has an undesired effect that also shear stiffness (controlled by
parameter r) and stiffness in isotropic unloading (controlled by parameter κ∗) is decreased,
see Fig. 6.4 (case A). Manipulation with the model reveals that the physical meaning of
the parameters r and κ∗ is retained if they are both scaled by the factor Si (Fig. 6.4, case
B). Therefore, modification of scalar factors c1 (6.23) and α (6.24) is required. They now
read

c1 =
2
(

3 + a2 − 2αa
√

3
)

9rSi
α =

1

ln 2
ln

[

λ∗ − κ∗Si
λ∗ + κ∗Si

(

3 + a2

a
√

3

)]

(6.18)
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Figure 6.4: Response envelopes of the model with constant sensitivity (Si = 1), model
modified only by multiplication of the factor fs by Si (case A) and model where the
physical meaning of parameters r and κ∗ is retained (case B).

Equations (6.8–6.10), (6.16–6.17) and (6.18) are the only modifications of the reference
hypoplastic model. The new model assumes one additional state variable s and three
additional parameters: k, A, and sf . Their calibration procedure is detailed in the following
text.
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6.5 Model performance and calibration

The performance of the proposed hypoplastic model will be evaluated using the concept
of the normalised incremental stress response envelopes (NIREs, see Fig. 6.5). They have
been introduced by Maš́ın and Herle [97] and follow directly from the concept of incremental
response envelopes [134] and rate response envelopes [50].

∆ε r2

∆ε a

p/p*e

q/p*e

R∆ε

Figure 6.5: Demonstration of the normalised incremental stress response envelopes for
axisymmetric conditions.

Figures 6.6a and 6.6b show the NIREs for different R∆ǫ = ‖∆ǫ‖ for natural and reconsti-
tuted specimens of Pisa clay (see the next section), with symbols for isotropic and constant
volume loading and unloading. For small R∆ǫ (states well inside the swept-out-memory
surface, Fig. 6.6a) the NIREs of the natural and reconstituted clays are similar in shape,
the sizes of the NIREs of the natural clay are s0 times larger than corresponding NIREs
of the reconstituted clay (where s0 is the initial sensitivity of the natural clay). We see
that although the damage strain (6.10) is defined in terms of total strain rates (instead
of plastic strain rates as usual in elasto-plastic models), the model predicts only minor
structure degradation for states inside the SBS. Minor structure degradation also inside
the SBS is supported by Takahashi et al. [128].

For larger R∆ǫ (Fig. 6.6b) the NIREs of the reconstituted clay coincide with its swept-
out-memory surface. The progressive structure degradation of the natural clay, however,
causes the NIREs of the natural clay to shrink towards the swept-out-memory surface
of the reconstituted material. The heart-like shape of the NIREs of the natural clay for
R∆ǫ > 8% is caused by the low value of the parameter A (Tab. 6.1), which causes more
significant influence of the volumetric strain component on the structure degradation.

The influence of the parameter k on model predictions is demonstrated in Fig. 6.7a. The
value of the parameter k was varied, while other model parameters (Tab. 6.1) were kept
unchanged. The figure demonstrates the faster structure degradation for larger values of
the parameter k. The influence of the parameter A is shown in Fig. 6.7b. Larger value of
the parameter A increases the influence of shear strains on the structure degradation and
thus flattens the NIREs. The common point of all NIREs is at the isotropic stress state.
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Figure 6.6: Normalised incremental stress response envelopes of the proposed hypoplastic
model plotted for medium (a) and large (b) strain range (R∆ǫ is indicated). The envelopes
for the reconstituted material obtained with the reference hypoplastic model (Maš́ın 2005)
are also included.

Therefore, the parameter k may be calibrated independently of the parameter A on the
basis of an isotropic compression test on natural soil. The parameter A is calibrated with
the already known value of k using an experiment where significant shear strains develop.
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Figure 6.7: The influence of the parameter k (a) and A (b).

The initial value of sensitivity may be determined from an assumption of a geometric
similarity between SBSs of natural and reconstituted soil [34] as a ratio of undrained
shear strengths of natural and reconstituted soil, or as a ratio of stresses at gross yield in
compression tests (e.g., K0 or isotropic) on natural specimens and equivalent stresses at
corresponding normal compression lines of a reconstituted soil. The final value of sensitivity
sf may be derived from compression tests on natural and reference materials performed to
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very large strains [7].

6.6 Evaluation of model predictions

The proposed model will be evaluated on the basis of laboratory experiments on two natural
clays with meta-stable structure.

Callisto and Calabresi [20] reported laboratory experiments on natural Pisa clay. Drained
probing tests were performed, with rectilinear stress paths having different orientations in
the stress space. In addition to the tests on natural Pisa clay, experiments with the same
stress paths were performed on reconstituted clay. Tests are labelled by prefix ’A’ and ’R’
for natural and reconstituted clay respectively, followed by the angle of stress paths in the
q : p space (measured in degrees anti-clockwise from the isotropic loading direction).

All the parameters of the proposed hypoplastic model, with the exception of parameters
related to the effects of structure (k, A and sf ), were be calibrated solely using laboratory
experiments on the reconstituted Pisa clay. The parameters N , λ∗ and κ∗ were calibrated
on the basis of an isotropic compression test on reconstituted Pisa clay ([19], Fig. 6.8a).
Critical state friction angle ϕc has been found by evaluating the data from shear tests,
parameter r has been calibrated on the basis of a parametric study using a single shear
test (R60, Fig. 6.8b).
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Figure 6.8: Calibration of the parameters N , λ∗ and κ∗ on the basis of an isotropic com-
pression test on reconstituted Pisa clay (a), parametric study for the calibration of the
parameter r (b).

For the calibration of the structure-related parameters k, A and sf , it has been assumed,
following Callisto and Rampello [23], that the experimental procedures adopted for prepa-
ration of reconstituted specimens reproduced correctly the stress history of the Pisa clay
deposit. Therefore, the stress paths of the equivalent experiments on natural and reconsti-
tuted clays should coincide, when plotted in the space normalised with respect to volume
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and structure σ/(p∗es) [34]. The current value of sensitivity s may be found by the time-
integration of the structure degradation law (6.9-6.10):

s = sf + (s0 − sf ) exp

[

− k

λ∗
ǫd
]

(6.19)

where ǫd is the accumulated damage strain

ǫd =

∫ t1

t0

ǫ̇ddt (6.20)

In this way, parameters k and A (and the initial value of sensitivity s) could be calibrated
directly by evaluation of the experimental data, without reference to single element mod-
elling of tests on natural clay. Calibration of the parameter k is demonstrated in Fig. 6.9a.
The shear strains in the test A0 are negligible, thus the parameter A does not influence
predictions of the structure degradation process (Fig. 6.7b, Eq. (6.10)). The value of the
parameter A was calibrated with the already known value of the parameter k using results
from shear tests R90 and A90 (Fig. 6.9b). The final value of sensitivity sf is assumed to be
equal to one. This appears to be a reasonable approximation [7], although no compression
or shear experiment on natural clay which would lead to a full destructuration is available.
Parameters of the hypoplastic model for natural Pisa clay are summarised in Table 6.1 and
the initial values of state variables in Table 6.2.

Table 6.1: Parameters of the proposed hypoplastic model for Pisa clay and Bothkennar

clay.

ϕc λ∗ κ∗ N r k A sf
Pisa 21.9◦ 0.14 0.0075 1.56 0.3 0.4 0.1 1

Bothkennar 35◦ 0.119 0.003 1.344 0.07 0.35 0.5 1

Table 6.2: The initial values of the state variables for natural and reconstituted Pisa clay

and natural Bothkennar clay.

p [kPa] q [kPa] e reconst. e nat. s

88.2 38 1.302 1.738 3.45
34 18 – 1.88 6

The evaluated parameters were used for simulation of laboratory experiments on Pisa
clay. Experimental data compared with predictions by the proposed hypoplastic model
are shown in Figs. 6.10, 6.11 and 6.12. The figures show that the hypoplastic model,
due to its non-linear nature, predicts correctly the gradual change of stiffness as the state
moves towards the state boundary surface. Consequently, the model predicts in agreement
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Figure 6.9: Calibration of parameters k (a) and A (b) using the structure degradation law
of the hypoplastic model.

with experiment smooth structure degradation process, which amplifies as the state moves
towards the state boundary surface (Fig. 6.10b).

Performance of the model in the strain space is evaluated in Fig. 6.13 using the concept of
incremental strain response envelopes (ISREs) [134, 99], defined inversely to the incremental
stress response envelopes. The hypoplastic model (Fig. 6.13b) predicts correctly the shape
of ISREs, with softer response in compression.

Experimental database by Callisto [19] includes undrained compression (AUC) and exten-
sion (AUE) tests on natural Pisa clay samples with the same pre-shear stress history as
drained probes A0–A315. These tests were simulated with parameters evaluated using data
from drained probes (Fig. 6.14). In compression, the proposed model predicts qualitatively
correctly the shape of the stress path, but the shear stiffness and the peak friction angle are
underestimated. In extension the stress-strain response is predicted correctly. However,
although the final state is reproduced accurately, the model predicts significant decrease
in mean stress in initial stages of the experiment that was not be observed experimentally.

Smith et al. [123] performed a series of triaxial stress probing tests on natural Bothkennar
clay. The soil, classified as a very silty clay [62], is characterised by relatively high (3-5%)
organic content. The soil composition induces somewhat unusual mechanical properties
with high plasticity typical to fine-grained soils combined with high critical state friction
angles [2]. The stress-probing experiments with constant direction of stress paths in the
stress space are labelled by prefix ’LCD’ followed by the orientation of the stress paths in
q : p space.

The parameters N and λ∗ for the Bothkennar clay were calibrated using results of K0 test
on a reconstituted sample ([123], Fig. 6.18). The shape of the swept-out-memory surface
of the hypoplastic model was taken into account in calculation of the parameter N from
the position of the K0 normal compression line in the ln(1 + e) : ln(p/pr) space. The
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Figure 6.10: Normalised stress paths of the natural and reconstituted Pisa clay (a) and
predictions by the hypoplastic model (b).
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Figure 6.11: Experiments on natural Pisa clay plotted in the ln(p/pr) vs. ln(1 + e) space
(a) and predictions by the proposed hypoplastic model (b).
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Figure 6.12: ǫs vs. q diagrams of experiments on natural Pisa clay (a) and predictions by
the proposed hypoplastic model (b).
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Figure 6.13: Incremental strain response envelopes for R∆σ = ‖∆σ‖=10, 20, 30 (bro-
ken line), 50 and 100 kPa, plotted together with strain paths in the

√
2ǫr vs. ǫa space.

Experimental data on natural Pisa clay (a) and predictions by the hypoplastic model (b).
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Figure 6.14: Normalised stress paths (a) and ǫs vs. q diagrams (b) of undrained compression
(AUC) and extension (AUE) experiments on Pisa clay.

final sensitivity sf is equal to one, as full destructuration is observed in K0 compression
experiments on natural Bothkennar clay ([123], Fig. 6.18). Because the set of stress
probing tests published by Smith et al. [123] does not include equivalent experiments on
reconstituted soil, other parameters including the initial value of sensitivity were evaluated
directly using stress probing data on natural Bothkennar clay by means of parametric
studies. The parameters and the initial values of state variables are summarised in Tabs.
6.1 and 6.2.

Comparison of experimental data from drained stress probing experiments on natural Both-
kennar clay [123] with predictions by the proposed hypoplastic model are shown in Figs.
6.15–6.17. Similarly to predictions of tests on natural Pisa clay, the proposed model yields
results which are in an agreement with experiments. The only notable difference is the
normalised stress paths of the test LCD315 which, due to the shape of the swept-out-
memory surface of the hypoplastic model, bends later than the experimental normalised
stress path. In this case the rotated shape of the swept-out-memory surface would possibly
lead to improvement of predictions. The incorporation of anisotropic effects, demonstrated
within the hypoplastic framework, for example, by Wu [150] and Niemunis [107], is however
outside the scope of this paper.

The set of parameters optimized for predictions of drained stress probing tests LCD was
further used to simulate K0 compression tests on natural Bothkennar clay. Experimental
data on Laval and Sherbrooke samples from Smith et al. [123], together with predictions
by the proposed hypoplastic model, are shown in Fig. 6.18. It is clear that the parameters
optimized for predictions of LCD tests lead to underprediction of the structure degradation
process in K0 compression, which may be possibly attributed to larger disturbance of
oedometric specimens in comparison with specimens tested in triaxial apparatuses. Similar
observation is reported by Callisto et al. [21] using the kinematic hardening model for
structured clays by Rouiania and Wood [118]. A better fit of the experimental data is
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Figure 6.15: Normalised stress paths of the natural and reconstituted Bothkennar clay (a)
and predictions by the proposed hypoplastic model (b).

0.9

0.95

1

1.05

1.1

2 2.5 3 3.5 4 4.5 5

ln
(1

+
e)

 [-
]

ln(p/pr) [-]

LCD0

LC
D

30

LC
D

55

LCD70

LCD110
LCD180

LCD315

Isot. NCL rec.
experiment

(a)

0.9

0.95

1

1.05

1.1

2 2.5 3 3.5 4 4.5 5

ln
(1

+
e)

 [-
]

ln(p/pr) [-]

LCD0LC
D

30

LC
D

55

LCD70

LCD110

LCD180

LCD315

Isot. NCL rec.
hypoplasticity

(b)

Figure 6.16: Experiments on natural Bothkennar clay plotted in the ln(p/pr) vs. ln(1 + e)
space (a) and predictions by the proposed hypoplastic model (b).
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Figure 6.17: ǫs vs. q diagrams of experiments on natural Bothkennar clay (a) and predic-
tions by the proposed hypoplastic model (b).

achieved by increasing the value of the parameter k (k = 0.6) and decreasing the initial
sensitivity (s0 = 4) – see also Fig. 6.18.
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Figure 6.18: K0 tests on natural Bothkennar clay simulated with the hypoplastic model
using two sets of material parameters. ”initial param.”: parameters optimized for predic-
tions of LCD tests, ”adjust. param.”: modified value of the parameter k (k = 0.6) and
lower initial sensitivity (s0 = 4).

6.7 Summary and conclusions

A simple approach to incorporating structure effects into an existing hypoplastic constitu-
tive model for reconstituted clays is presented in the paper. Unlike the previous attempts
to incorporate structure effects into hypoplasticity, the proposed approach is based on the
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modification of the barotropy and pyknotropy factors that leads to an increase of the size
of the state boundary surface predicted by the model and ensures consistency between the
model predictions and the pre-defined structure degradation law. Model predictions com-
pare well with experimental data on two natural clays. In fact, predictions of laboratory
experiments on natural Pisa and Bothkennar clays presented in the paper are compara-
ble with predictions by kinematic hardening elasto-plastic models, see [7, 21] for drained
probing tests on natural Pisa clay and [8, 7, 46] for LCD tests on natural Bothkennar clay.

The proposed method for incorporating the structure effects into hypoplasticity also opens
a way to model other structural effects using hypoplasticity theory, such as mechanical [79]
and chemical [111] debonding in cemented granular materials, simulating grain crushing
[25], or modelling unsaturated [3] and double-porosity materials [93].

Appendix

The mathematical formulation of a reference hypoplastic model for clays model is sum-
marised briefly in the following. The rate formulation of the hypoplastic model reads

σ̇ = fsL : ǫ̇ + fsfdN ‖ǫ̇‖ (6.21)

The fourth-order tensor L is a hypoelastic tensor given by

L = 3
(

c1I + c2a
2σ̂ ⊗ σ̂

)

(6.22)

with the two scalar factors c1 and c2 introduced by [61] and modified by [87]:

c1 =
2
(

3 + a2 − 2αa
√

3
)

9r
c2 = 1 + (1 − c1)

3

a2
(6.23)

where the scalars a and α are functions of the material parameters ϕc, λ
∗ and κ∗

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc
α =

1

ln 2
ln

[

λ∗ − κ∗

λ∗ + κ∗

(

3 + a2

a
√

3

)]

(6.24)

The second-order tensor N is given by Niemunis [106]

N = L :

(

Y
m

‖m‖

)

(6.25)

where the quantity Y determines the shape of the critical state locus in the stress space
such that for Y = 1 it coincides with the Matsuoka and Nakai [85] limit stress condition.

Y =

( √
3a

3 + a2
− 1

)

(I1I2 + 9I3)
(

1 − sin2 ϕc
)

8I3 sin2 ϕc
+

√
3a

3 + a2
(6.26)
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with the stress invariants

I1 = tr(σ) I2 =
1

2

[

σ : σ − (I1)
2
]

I3 = det(σ)

det(σ) is the determinant of σ. The second-order tensor m has parallel in the flow rule in
elasto-plasticity. It is calculated by

m = − a

F

[

σ̂ + dev σ̂ − σ̂

3

(

6σ̂ : σ̂ − 1

(F/a)2 + σ̂ : σ̂

)]

(6.27)

with the factor F

F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ (6.28)

where

tanψ =
√

3 ‖dev σ̂‖ cos 3θ = −
√

6
tr (dev σ̂ · dev σ̂ · dev σ̂)

[dev σ̂ : dev σ̂]3/2
(6.29)

The barotropy factor fs introduces the influence of the mean stress level. The way of its
derivation ensures that the hypoplastic model predicts correctly the isotropic normally
compressed states.

fs =
3p

λ∗

(

3 + a2 − 2αa
√

3
)−1

(6.30)

The pyknotropy factor fd incorporates the influence of the overconsolidation ratio. The
critical state is characterised by fd = 1 and the isotropic normally compressed state by
fd = 2α.

fd =

(

2p

p∗e

)α

p∗e = pr exp

[

N − ln(1 + e)

λ∗

]

(6.31)

with the reference stress pr = 1 kPa. Finally, evolution of the state variable e (void ratio)
is governed by

ė = − (1 + e) ǫ̇v (6.32)
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Chapter 7

Comparison of elasto-plastic and
hypoplastic modelling of
structured clays

7.1 Introduction

The recently developed constitutive models for structured clays are based on fundamentally
different mathematical backgrounds. The conceptual approach utilised for their develop-
ment is, however, often very similar. These models are usually based on existing models for
reconstituted soils with modified size (and in some cases also shape) of the state boundary
surface (SBS).

The aim of the paper is a further evaluation of a hypoplastic model for structured clays
by Maš́ın [88]. Predictions by this model are compared with its elasto-plastic alterna-
tive developed in the paper. The Structured modified Cam clay (SMCC) model has a
similar structure degradation law and the same number of parameters with an equivalent
physical meaning as the hypoplastic model. Thus both models are characterised by the
same calibration procedure and the same complexity from the standpoint of a practising
engineer.

All simulations with the hypoplastic model are taken over from Reference [88]. The aim of
the present work is to supplement these simulations by predictions of a simple elasto-plastic
model and thus to reveal merits of the non-linear character of the hypoplastic formulation.
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7.2 Constitutive models

7.2.1 Hypoplastic model for clays with meta-stable structure

A hypoplastic model for clays with meta-stable structure [88] has been developed by in-
troducing a structure degradation law into the hypoplastic model for clays by Maš́ın [87].
Incorporation of meta-stable structure into hypoplasticity has been discussed elsewhere
[88, 89]. The model assumes additional state variable sensitivity sh, defined as the ratio
of the sizes of SBS of structured and reference materials. Sensitivity is in the case of a
hypoplastic model measured along a constant volume section through SBS, see Fig. 7.1a.
The rate formulation of sensitivity reads

ṡh = − k

λ∗
(sh − shf )ǫ̇

d (7.1)

where k, shf (final sensitivity) and λ∗ are parameters and ǫ̇d is a damage strain rate, defined
as

ǫ̇d =

√

(ǫ̇v)
2 +

A

1 −A
(ǫ̇s)

2 (7.2)

ǫ̇v and ǫ̇s denote volumetric and shear strain rates respectively and A is a model parameter.
For further details of the mathematical structure of the model the reader is referred to
Reference [88].
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Figure 7.1: (a) Definitions of sensitivities sep and sh, quantities p∗c and p∗e and material
parameters N , λ∗ and κ∗. (b) Demonstration of similarity of the two structure degradation
laws on the basis of an isotropic compression test. pr is a reference stress 1 kPa.
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7.2.2 Structured modified Cam clay model

The SMCC model, based on the Modified Cam clay model by Roscoe and Burland [117]
enhanced by Butterfield’s [18] compression law, has been developed as an elasto-plastic
equivalent of the hypoplastic model by Maš́ın [88]. The mathematical formulation of the
model is similar to other elasto-plastic models for structured soils, such as the models by
Liu and Carter [82] or Bauudet and Stallebrass [8].

As commonly in elasto-plastic models, sensitivity sep is measured along the elastic wall,
not along the constant volume section through SBS as in hypoplasticity (see Fig. 7.1a).
sep thus represents the ratio of the sizes of yield surfaces of natural and reference materials.
From Fig. 7.1a it is clear that

sep =
(

sh
)

“

λ
∗

λ∗
−κ∗

”

(7.3)

The rate formulation for sensitivity sep reads

ṡep = − k

λ∗ − κ∗
(sep − sepf )ǫ̇d (7.4)

and the damage strain rate is defined as

ǫ̇d =

√

(ǫ̇pv)
2
+

A

1 −A
(ǫ̇ps)

2
(7.5)

where ǫ̇pv and ǫ̇ps denote plastic volumetric and shear strain rates respectively. A complete
mathematical formulation of the SMCC model is given in Appendix.

From Eqs. (7.1,7.2) and (7.4,7.5) it is clear that the structure degradation laws of hy-
poplastic and SMCC models are not completely equivalent. In order to compare both
formulations, simulations of isotropic compression of isotropically normally consolidated
specimens with varying parameter k are plotted in Fig. 7.1b. The figure demonstrates
that for a given parameter k both laws yield similar rates of structure degradation and
thus direct comparison of hypoplastic and SMCC models is possible.

7.3 Evaluation of the models

The two constitutive models have been evaluated on the basis of laboratory experiments
on natural and reconstituted Pisa clay [19, 20] and natural Bothkennar clay [123]. Details
of analyses and predictions by the hypoplastic model are presented in Reference [88].

In the case of Pisa clay, all parameters with the exception of parameters that control
the influence of structure (k, A, and shf/s

ep
f ) were found by simulating experiments on

reconstituted Pisa clay. Fig. 7.2 demonstrates calibration of parameters N , λ∗ and κ∗

and parameters that control the shear stiffness, i.e. G (SMCC) and r (hypoplasticity).
Structure-related parameters k, A, and shf/s

ep
f were found by direct evaluation of exper-

imental data on natural Pisa clay. In the case of Bothkennar clay, experiments on re-
constituted soil, which would be equivalent to simulated experiments on natural clay are
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Figure 7.2: (a) Calibration of the parameters N , λ∗ and κ∗ of hypoplastic and SMCC
models (isotropic compression test on reconstituted Pisa clay from Callisto 1996); (b)
Calibration of the parameter r of the hypoplastic model and G of the SMCC model (data
from Callisto and Calabresi 1998).

not available, thus all parameters were found by simulation of experiments on natural
Bothkennar clay. Parameters of both models are summarised in Tab. 7.1.

Table 7.1: Parameters of the hypoplastic and SMCC models for Pisa and Bothkennar clays.

hypoplasticity ϕc λ∗ κ∗ N r k A shf
Pisa 21.9◦ 0.14 0.0075 1.56 0.3 0.4 0.1 1

Bothkennar 35◦ 0.119 0.003 1.344 0.07 0.35 0.5 1

SMCC M λ∗ κ∗ N G k A sepf
Pisa 0.85 0.14 0.02 1.56 1 MPa 0.4 0.1 1

Bothkennar 1.42 0.119 0.01 1.344 2 MPa 0.35 0.5 1

Fig. 7.3 shows results of simulations of experiments on Pisa clay, namely stress paths
normalised by the Hvorslev equivalent pressure p∗e (a) and response in ln(p/pr) vs. ln(1+e)
space (b). Normalised stress paths of natural Bothkennar clay are in Fig. 7.4a, ǫs vs. q
curves in Fig. 7.4b. Figures 7.3 and 7.4 demonstrate some common features and some
differences in predictions by the hypoplastic and SMCC models. Both models predict
apparently similar shape of the SBS and, in general, a similar stress-strain behaviour at
larger strains. The main difference stems from the non-linear character of the hypoplastic
equation that facilitates the non-linear response also inside the SBS, with a gradual decrease
of shear and bulk moduli and a smooth structure-degradation process.
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Figure 7.3: (a) normalised stress paths of the natural and reconstituted Pisa clay and (b)
experiments on natural Pisa clay plotted in the ln(p/pr) vs. ln(1 + e) space. Experimental
data and predictions by the hypoplastic and SMCC models.

7.4 Concluding remarks

The presented simulations demonstrate the well-known shortcoming of the SMCC model,
the elastic behaviour inside the SBS. Many advanced elasto-plastic constitutive models
overcome this problem, for example by introducing a kinematic hardening yield surface
(among others see Baudet and Stallebrass [8]). These enhancements, however, often sig-
nificantly increase complexity of the mathematical formulation of the models and increase
the number of parameters, which is a limiting factor for the applicability of the models
for practical engineering purposes. The paper aimed to demonstrate that hypoplasticity,
which requires only a limited number of material parameters (equivalent to the most sim-
ple elasto-plastic models, such as the SMCC model) is a valid alternative to advanced
elasto-plastic models for structured clays.
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Figure 7.4: (a) normalised stress paths and (b) ǫs vs. q curves from experiments on natural
Bothkennar clay. Experimental data and predictions by the hypoplastic and SMCC models.

Appendix

The appendix presents a complete mathematical formulation of the Structured Modified Cam clay
(SMCC) model. The rate formulation of the model reads

σ̇ = D
e : (ǫ̇ − ǫ̇p) (7.6)

The elastic stiffness matrix D
e is calculated from the shear modulus G (parameter) and bulk

modulus K, related to the parameter κ∗ via K = p/κ∗, by

D
e =

(

K − 2

3
G

)

1⊗ 1 + 2GI (7.7)

Yield surface (f) is associated with the plastic potential (g) surface

f = g = q2 +M2p (p− sepp∗c) (7.8)
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M is the model parameter, sep (sensitivity) is the state variable and the quantity p∗c is related to
the state variable e (void ratio) through the equation

p∗c = pr exp

(

N − κ∗ ln (p/pr) − ln (1 + e)

λ∗ − κ∗

)

(7.9)

where pr is the reference stress 1 kPa and N and λ∗ are model parameters. Inside the yield surface
(f < 0), ǫ̇p = 0. For stress states on the yield surface, the plastic strain rate is given by:

ǫ̇p =
〈m : D

e : ǫ̇〉
H + m : D

e : m
m (7.10)

where the operator 〈x〉 := (x + |x|)/2 denotes the positive part of any scalar function x, H is the
plastic modulus calculated from the consistency condition

H =
M2pp∗c
λ∗ − κ∗

[

sep tr(m) − k
(

sep − sep
f

)

√

tr2(m) +

(

A

1 −A

)

2

3
dev(m) : dev(m)

]

(7.11)

and the tensor m is calculated by:

m =
∂f

∂σ
=
M2(2p− sepp∗c)

3
1 + 3 dev(σ) (7.12)

sep
f and k are model parameters. Evolution of state variables is governed by equations:

ė = − (1 + e) ǫ̇v ṡep = − k

λ∗ − κ∗
(sep − sep

f )

√

(ǫ̇pv)
2

+
A

1 −A
(ǫ̇ps)

2
(7.13)

ǫ̇pv and ǫ̇ps are rates of plastic volumetric and shear strains respectively and A is model parameter.
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Chapter 8

Summary and conclusions

The thesis traces the research into the constitutive modelling of fine-grained soils using
theory of hypoplasticity. The developed constitutive model is from the practical point of
view equivalent to the Modified Cam clay model, since it requires the same number of
material parameters with an equivalent physical meaning. However, due to the non-linear
character of the hypoplastic formulation, the quality of predictions by the proposed model
is at least comparable to more complex advanced elasto-plastic models.

From the mathematical standpoint, the model is positively homogeneous of degree 1 in
D and for a given value of fd in T. Therefore, the behaviour of the fine-grained soil is
assumed to be rate-independent. This is clearly a strong assumption that limits the validity
of the material parameters only to certain range of loading rates. Positive homogeneity
of degree 1 in T for given fd implies parallel normal compression lines of the slope λ∗ in
the ln(1 + e) vs. ln p space. Also, the behaviour is for a given degree of overconsolidation
assumed to be scalable by the mean stress, which is according to experimental evidence a
reasonable approximation of the behaviour of clays.

The model requires four other material parameters in addition to λ∗. N determines the
position of the isotropic normal compression line, κ∗ the slope of the isotropic unloading
line in the ln(1 + e) vs. ln p space. Unlike in the Cam clay-type models, the slope of
the unloading branch is exactly equal to the parameter κ∗ only for unloading from the
isotropic normally consolidated state, at overconsolidated states the slope is higher, due
to the non-linear character of the model formulation. The next parameter, ϕc, defines the
critical state friction angle at triaxial compression and extension. The model makes use of
the Matsuoka-Nakai shape of the critical state locus in the stress space, so for other Lode
angles the critical state friction angle is slightly higher than ϕc. This is well in agreement
with experimental data. The last parameter, r, controls the shear stiffness, which decreases
with increasing r. This parameter is usually calibrated by means of a parametric study.

A shortcoming of hypoplastic models in general is an inevitable ”rachetting”, i.e. the
extensive accumulation of strains during cyclic loading caused by the too soft response upon
sharp reversals of the stress/strain paths directions. Niemunis and Herle [108] proposed
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a modification of the hypoplastic equation by introducing so-called intergranular strain
concept that eliminates this shortcoming. The proposed model has been designed to be
used with the intergranular strain enhancement by letting the tensor L to have the form
appropriate to predict both the behaviour in the small strain range and upon sharp path
reversal (in this case the nonlinear part N‖D‖ of the hypoplastic equation is ruled out)
and for continuing deformation (in limit the model response tends to the basic hypoplastic
formulation).

It has been shown that the proposed form of the constitutive tensors L and N and the
barotropy and pyknotropy factors fd and fs allow us to derive a closed-form solution for
swept-out-memory states, which compose a hypersurface in the stress – void ratio space
called swept-out-memory surface1. This surface is a close approximation of the state bound-
ary surface, defined as boundary of all possible states in the stress – void ratio space. Pre-
diction of the state boundary surface is an important property of the proposed model that
makes it possible not only to compare the model response with relevant experimental data,
but mainly it opens the way for further extensions of the model. The study in Chapter 3
revealed an important shortcoming of the model – the swept-out-memory surface does not
have a reasonable shape for too high values of the ratio κ∗/λ∗. However, if κ∗/λ∗ is smaller
than approx. 1/4, the shape of the state boundary surface compares well with the shape
observed experimentally.

Predictions by the proposed model were compared with a number of existing elasto-plastic
and hypoplastic models, namely Modified Cam clay model, three surface kinematic hard-
ening (3-SKH) model and a Grenoble-type hypoplastic model (CLoE). With regard to the
directional response, the proposed model, together with the 3-SKH model, performed best.
As expected, a simple Modified Cam clay model has shown a poor performance for loading
paths directed inside the elastic region, while the non-linear character of the hypoplastic
model led to at least qualitatively correct predictions for all loading directions. Predictions
of stress probes that followed after sharp stress-path reversal were further improved by
applying the intergranular strain concept. The 3-SKH model performed similarly to the
proposed hypoplastic model. This is a consequence of the fact that although both models
are developed using different mathematical concepts, they are both based on the similar
physical interpretation of the behaviour of fine-grained soils.

A study of the validity of a single set of material parameters for prediction of behaviour of
soils at different overconsolidation ratios (OCR) revealed that if the proposed hypoplastic
model is calibrated at higher OCR, it performs well for a broad range of OCRs, both
qualitatively and quantitatively. The Modified Cam clay model and the 3-SKH model
performed in this case worst than the proposed hypoplastic model.

The last part of the thesis demonstrated a possibility for further extension of the model. In
particular, the basic model was modified to predict the behaviour of clays with meta-stable
structure. The framework for the mechanical behaviour of natural clays by Cotecchia and
Chandler [34], according to which it is possible to relate the behaviour of natural and

1This closed-form solution is not available for other hypoplastic models, such as the model by von
Wolffersdorff [141]
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reconstituted clay through the state variable sensitivity, was applied. The sensitivity was
incorporated in such a way that the size of the state boundary surface was increased,
other material properties were however kept unchanged. A suitable evolution equation for
sensitivity then enabled us to predict the behaviour of clays with meta-stable structure.
Predictions of the enhanced hypoplastic model were compared with predictions by its
elasto-plastic ’equivalent’, structured Modified Cam clay model, developed in Chapter 7.
It was again clearly demonstrated that with the same number of parameters of equivalent
physical interpretation the non-linear hypoplastic model leads to better predictions.
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Chapter 9

Outlook

The proposed model is conceptually very simple, and the small number of material pa-
rameters obviously does not allow us to tune the model predictions into great detail. Any
further modification of the model would, however, require extensive evaluation that would
pinpoint systematic differences between model predictions and experiment. In this respect
an independent evaluation by different researchers working in the field of constitutive mod-
elling is particularly valuable.

Weifner [143] compared predictions by the proposed model with different hypoplastic mod-
els for fine-grained soils [105, 54, 61], based on experimental data on Weald clay by
Henkel [59, 60]. The data consist of isotropic loading and unloading tests and drained
and undrained triaxial tests starting from isotropic normally consolidated and overcon-
solidated (OCR = 24) states. Weifner observed shortcoming of the model discussed in
Chapter 3 – the model does not perform realistically for too high values of the ratio κ∗/λ∗.
If κ∗ was changed to sufficiently low value the model performed reasonably at normally
consolidated states, but the response at isotropic unloading was too stiff. Because the
initial state of shear experiments was found by simulating the consolidation stress history,
too stiff response in isotropic unloading led to apparently higher overconsolidation and
therefore the peak stiffness and dilatancy in tests at OCR = 24 was exaggerated.

Huang et al. [63] point out a different shortcoming of the proposed model – the model does
not perform correctly under undrained conditions at normally consolidated states. This
is an inevitable consequence of a hypoplastic formulation, which is characterised by the
translated elliptical response envelope. In order to calibrate the model parameters λ∗ and
κ∗ at isotropic loading and unloading conditions, the response envelope must be shifted in
such a way that under constant volume conditions an excessive decrease of the mean stress
is predicted. Huang et al. proposed an approach to overcome this shortcoming. Starting
from the hypoplastic formulation by Gudehus [53], they produced a hybrid elasto-plastic-
hypoplastic model. At isotropic stress states the non-linear part vanishes, the model is
incrementally bi-linear, i.e. equivalent to an elasto-plastic model. The predicted initial part
of the undrained stress paths is then perpendicular to the p-axis. With higher deviatoric
stresses the non-linear part is activated and hybrid elasto-plastic-hypoplastic predictions
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are obtained. The formulation by Gudehus [53] is modified in such a way that the model
requires parameters equivalent to the model from Chapter 2. The model by Huang et al.
does not include pyknotropy, i.e. it can be only used for normally consolidated states and
does not predict a unique critical state line in the stress vs. void ratio space. The model is
not positively homogeneous of degree 1 in T, so normal compression lines that correspond
to higher ratio η = q/p do not have a slope of λ∗. However, the directional homogeneity
with respect to T (defined by Niemunis [106]) is satisfied so the model predicts asymptotic
states (in the stress space).

A conceptually similar approach to that by Huang et al. [63] to improve response of
hypoplastic models to undrained shearing, which is directly applicable to the model from
Chapter 2, has been proposed by Niemunis [106]. In this case the linear part L of the model
is kept unchanged, at isotropic state the term ~m‖D‖ is replaced by ~r|~r : D|, where the unit
tensor ~r is (for any stress state) parallel to T̂. For ~D = ±~r we have |~r : D| = ‖D‖ and since
~r = ~m the original hypoplastic response is recovered. For D ⊥ ~r, however, |~r : D| = 0 and
response is hypoelastic and is controlled by the linear term L : D only. The hypoelastic
response envelope is therefore squeezed in the direction of loading and elongated in the
direction of unloading, its shape is equivalent to that proposed by Huang et al. [63] and
the model also predicts initial portion of the undrained stress path perpendicular to the
p-axis. For anisotropic stress states Niemunis [106] suggests interpolation between ~m‖D‖
and ~r|~r : D| such that at the critical state surface (in the stress space) the response is
purely hypoplastic.

The next step in the evaluation of predictive capabilities of the model is the comparison
of its predictions with measurements on the boundary-value problem scale. The proposed
model has been implemented into finite element code via a user-defined subroutine umat.f
by Tamagnini [129] (direct perturbation method) and Arnold [4] (Fellin and Ostermann
algorithm [44]), both with and without intergranular strain concept. Maš́ın and Herle
[94] presented finite element simulations of the Heathrow Express trial tunnel [41] by the
proposed model, Mohr-Coulomb model and a Modified Cam clay model. Although the
proposed model predicts wider settlement trough than measured in the field, its predictions
are significantly more realistic than predictions by the simpler models. Further evaluation
of the model with respect to boundary-value problems is needed.

The behaviour of fine-grained soils is markedly rate-dependent, and the assumption of rate-
independence is reasonable only for a relatively narrow ranges of loading rates. This fact
necessarily complicates any experimental program as in looking for parameters relevant to
the given boundary value problem the soil should be tested at the loading rates similar
to the field. These rates can only be estimated, often very roughly. Rate effects could be
relatively easily incorporated into the proposed model by adopting an approach proposed by
Niemunis [106] and further discussed by Gudehus [54]. The stretching rate D is decomposed
into the viscous (Dv) and non-viscous (D − Dv) part. The viscous part Dv has the same
tensorial direction as the non-linear part of the reference model ( ~m), its magnitude is
dependent on overconsolidation ratio via two new material parameters. The reference
stress pr is dependent on the stretching rate ‖D‖. It has been shown [106, 54] that a
hypoplastic model modified in this way can qualitatively correctly predict creep, relaxation
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and response to strain rate jumps. A thorough evaluation of this concept when used with
the proposed model would, however, be needed.

During the geological history natural soils undergo compression underK0 conditions, which
often leads to one-dimensionally oriented fabric. This fabric implies a textural anisotropy,
which may be observed even when the soil is tested from isotropic stress state. The model
of Chapter 2 is orthotropic with the planes of symmetry given by eigenvectors of T, at
isotropic stress state, however, the response is isotropic [107]. Incorporation of anisotropy
into hypoplasticity has been first proposed by Wu [150, 152]. He replaced the non-linear
part N of his early version of hypoplastic model [151] by Aa : N, where Aa is a fourth-order
transversally isotropic tensor. As discussed by Niemunis [107], shortcoming of this rather
simple approach is that the modification of the non-linear part N only does not provide the
desirable independent control over dilatancy, strength and stiffness, as in hypoplasticity
these features are implied by a combined effect of L and N. Niemunis [107] therefore
suggested a different modification, which is applied to the formulation from Eq. (2.8)
and keeps the critical state locus (incorporated via Y ) and a hypoplastic flow rule (~m)
unchanged. Modification of the linear term L and a pyknotropy factor fd only enabled
him to improve the dilatancy curve and the shape of the undrained stress path produced
by the model. Further development would be needed to incorporate most effects of textural
anisotropy, such as anisotropic shape of the state boundary surface, stiffness, dilatancy and
shape of the undrained stress path.

With regard to the model for structured soils (Chapter 6), more research would be required
to incorporate true cohesion caused by interparticle bonding. A simple idea of the replace-
ment of stress tensor T by a transformed stress tensor Tt according to equation (6.7) has
undesired effects. Namely, the normal compression lines are shifted in the ln(1+ e) vs. ln p
space, they are in this space no-more linear and undefined for p→ 0, so the parameter λ∗

loses its physical meaning. Also other material properties (e.g. shear and bulk stiffnesses),
which are measured with respect to the true stress T, now relate to the transformed stress
Tt. The model loses its positive homogeneity of degree one in T so it does not predict any
longer asymptotic (swept-out-memory) states in the true stress space T.

The model for structured clays of Chapter 6 can be straightforwardly applied to double
porosity materials. A typical example of these materials are double-porosity clayfills from
open-cast coal mines in north Bohemia, which consist of clay lumps up to half meter in size,
dumped without any compaction. In addition to the intragranular porosity (porosity of
clay lumps) the overall void ratio is increased by the intergranular porosity (voids between
clay lumps). Mechanical behaviour of such a composite material is relatively complex. A
framework for its description has been put forward by Maš́ın et al. [93], a similar approach
has been suggested by Koliji et al. [74]. The reference constitutive model now describes
the behaviour of the material of clay lumps, whereas sensitivity s is a measure of addi-
tional structure caused by intergranular porosity. The evolution of sensitivity represents
degradation of the intergranular porosity, i.e. closing the voids between individual clay
lumps. The evolution equation for sensitivity may be calibrated by means of compression
experiments on the material of clay lumps and corresponding granulated material. Due to
the dimensions of experimental apparatuses the material with reduced granulometry must
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often be used.

As the last point, a modification of the proposed model to predict the behaviour of un-
saturated soils will be discussed. An attempt to incorporate partial saturation into an
existing hypoplastic equation has been proposed by Gudehus [52]. In his work the effec-
tive stress principle is applied, i.e. the existing hypoplastic equation is without further
modification written in terms of the effective stress in partially saturated soils, starting
with the definition by Bishop [15] and continuing with a more complex one. Qualitatively
correct predictions for some loading paths are claimed. The model was, primarily from the
mathematical point of view, further investigated by Niemunis [106]. However, as discussed
by Wheeler and Karube [144], the model does not enable us to represent some of the most
fundamental features of unsaturated soil behaviour, most notably the correct pattern of
swelling and collapse on wetting. To overcome this problem, a scalar state variable that
represents normal forces on grain contacts produced by the menisci of the pore fluid is
needed, in addition to the tensorial stress variable that represents the action of external
forces. An extensive research in unsaturated soil behaviour did not lead to a unique choice
of the two state variables that would be ideal. In general, simple state variables (used,
e.g., by Alonso et al. [3]) lead to more complex constitutive models. More complex state
variables (advocated, e.g., by Loret and Khalili [83]) simplify the definition of the consti-
tutive models, but complicate description of the stress state in such a way that it may be
difficult to devise simple experimental tests to measure relevant soil parameters.

An attempt to develop a hypoplastic model for granular materials considering a scalar
state variable that represents the action of capillary mensici has been presented by Bauer
et al. [11]. Their model is, however, oversimplified – the only modification of the original
equation is that the granulate hardness hs (an equivalent of a reference pressure pr of
the model of Chapter 2) is made dependent on degree of saturation. In this way different
compressibilities of soils with different moisture contents are predicted. However, the model
does not predict the behaviour of soils when subjected to changes in degree of saturation.

A more comprehensive modification of the model of Chapter 2 is being developed by
Maš́ın [91]. The approach by Alonso et al. [3] is used, the stress state is characterised
by net stress σ = σt − 1ua and suction s = ua − uw, where σt is total stress, ua and
uw are the pressures of the pore air and water respectively. The influence of suction is
treated similarly to the model by Alonso et al. [3]. Equivalent suction s∗e is introduced
as the additional state variable that characterises the previous suction-loading history, the
straining due to suction changes at overconsolidated states is controlled by the non-linear
hypoplastic equation resembling the basic form of hypoplastic models for saturated soils.
A consistency condition for the swept-out-memory surface from Chapter 3 is introduced in
order to model wetting induced collapse. The model therefore shares some features with
the bounding surface plasticity models [38].

The next step in the development of the hypoplastic model for unsaturated soils will be the
application of more complex state variables (such as those discussed by Khalili et al. [72])
and a comparison of the merits and disadvantages of both formulations. Subsequently, the
hysteretic soil-water characteristic curve should be incorporated.
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general formulation of hypoplasticity. International Journal for Numerical and An-
alytical Methods in Geomechanics, 28:1461–1478, 2004.

[81] P. I. Lewin and J. B. Burland. Stress-probe experiments on saturated normally
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