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ABSTRACT: Hypoplastic model for clays is presented which predicts anisotropy of very small strain stiffness.
The existing hypoplastic model with explicit formulation of the asymptotic state boundary surface is combined
with an anisotropic form of the stiffness tensor. Naturally, the resultant model predicts correctly the very small
strain stiffness anisotropy. It is demonstrated that properly are also predicted trends in the anisotropy influence
on undrained stress paths. The model is evaluated using hollow cylinder apparatus experimental data on London
clay taken over from literature.

INTRODUCTION

Anisotropy of sedimentary clays is such a significant
feature of their mechanical behaviour that it cannot be
ignored in boundary value problem simulations. For
example, Addenbrooke et al. (1997), Gunn (1993),
Ng et al. (2004) and Franzius et al. (2005) demon-
strated that incorporation of stiffness anisotropy im-
proved predictions of tunnelling problems. In this pa-
per, we present a hypoplastic model for clays incorpo-
rating very small strain stiffness anisotropy recently
developed by Mašı́n (2013). The model is also capa-
ble of predicting small strain stiffness non-linearity,
recent stress history effects and large-strain asymp-
totic behaviour (Gudehus and Mašı́n 2009, Mašı́n
2012a), which are features inherited from the refer-
ence model with isotropic stiffness.

Hypoplasticity is an approach to non-linear consti-
tutive modelling of geomaterials. In its general form
by Gudehus (1996) it may be written as

σ̊ = fs (L : ǫ̇+ fdN‖ǫ̇‖) (1)

where σ̊ and ǫ̇ represent the objective (Zaremba-
Jaumann) stress rate and the Euler stretching ten-
sor respectively, L and N are fourth- and second-
order constitutive tensors, and fs and fd are two
scalar factors. In hypoplasticity, stiffness predicted
by the model is controlled by the tensor L, while
strength (and asymptotic response in general, see
Mašı́n 2012a), is governed by a combination of L
and N. Earlier hypoplastic models, such as models
by von Wolffersdorff (1996) and Mašı́n (2005), did
not allow to adjust the L formulation freely, as any

modification of tensor L undesirably influenced the
predicted asymptotic states. This hypoplasticity lim-
itation was overcome by Mašı́n (2012c). He devel-
oped an approach enabling to specify the asymptotic
state boundary surface independently of the tensor L
and demonstrated it by proposing a simple hypoplas-
tic equivalent of the Modified Cam-clay model. Based
this approach, Mašı́n (2012b) developed an advanced
hypoplastic model for clays. This model serves as an
underlining model for the presented model incorpo-
rating stiffness anisotropy. For further details of hy-
poplastic modelling, the readers are referred to the
above-cited publications.

MODEL FORMULATION

The model presented in this paper combines hy-
poplastic model from Mašı́n (2012b) with anisotropic
form of the tensor L proposed by Mašı́n & Rott
(2013). Mašı́n & Rott (2013) adopted general
transversely elastic model formulation, which reads
(Spencer 1982, Lubarda & Chen 2008)

L =
1

2
a11 ◦ 1 + a21 ⊗ 1 + a3 (p⊗ 1 + 1 ⊗ p)+

+a4p ◦ 1 + a5p⊗ p

(2)

where the tensor products represented by ”⊗” and ”◦”
are defined as

(p⊗ 1)ijkl = pij1kl (3)

(p ◦ 1)ijkl =
1

2
(pik1jl + pil1jk + pjl1ik + pjk1il) (4)



where pij = ninj , while ni is a unit vector normal to
the plane of symmetry (in sedimentary soils this vec-
tor typically represents the vertical direction). a1 to a5
in Eq. (2) represent five material constants. They are
defined as
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where the anisotropy coefficients αG, αE and αν read

αG =
Gpp

Gtp
(10)
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Ep

Et
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νpp
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(12)

Gij are shear moduli, Ei are Young moduli and νij
are Poisson ratios. Subscript ”p” denotes direction
within the plane of isotropy (typically horisontal di-
rection) and subscript ”t” denotes direction transverse
to the plane of isotropy (typically vertical direction).
As suggested by Mašı́n & Rott (2013), parameters αE

and αν may be estimated using empirical correlations

αE = α
(1/xGE)
G (13)

αν = α
(1/xGν)
G (14)

with xGE = 0.8 and xGν = 1.
When compared to the reference model, incorpora-

tion of anisotropic form of L requires re-evaluation of
the factor fs from (1). According to Mašı́n (2012c),
this factor may be quantified by comparing the
isotropic unloading formulation of the hypoplastic
model with the isotropic unloading line of the pre-
defined form

ė

1 + e
= −κ∗

ṗ

p
(15)

The isotropic version of the model is obtained by al-
gebraic manipulations with (1), for details see Mašı́n
(2013).
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Comparison of (16) with (15) then yields

fs = −
3 trσ

2Am
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)

(18)

The proposed model reduces to the reference one for
αG = αE = αν = 1.

To predict very small strain stiffness and recent
stress history effects, the model must be combined
with the intergranular strain concept by Niemunis &
Herle (1997). The very small strain stiffness matrix
M0 then reads

M0 = mRfsL (19)

The shear Gtp0 component of the tensor M0 is given
by (from (2), (17) and (18))
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In the present work, we consider the following depen-
dency of Gtp0 on mean stress p (Wroth and Houlsby
1985)

Gtp0 = prAg

(

p

pr

)ng

(21)

where Ag and ng are parameters and pr is a reference
pressure of 1 kPa. Comparison of (20) and (21) yields
the following expression for the variable1 mR.
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Complete model formulation is presented in the jour-
nal publication (Mašı́n 2013). Its finite element im-
plementation is freely available on the web (Gudehus
et al. 2008).

1Note that in the original intergranular strain concept formu-
lation, mR is considered as a parameter. Contrary, in the formu-
lation proposed here, mR is a variable calculated on the basis of
Gtp0 expression (21).



EVALUATION OF THE MODEL

The proposed model has been evaluated using ex-
tensive experimental data set on London clay from
Imperial College project by Nishimura et al. (2007),
Nishimura (2005), Gasparre et al. (2007) and Gas-
parre (2005). They tested undisturbed samples of
London clay from the excavation at Heathrow, Ter-
minal 5. In the evaluation, we used hollow cylinder
tests on London clay from the depth of 10.5 m. Two
sets of experiments have been simulated. In the first
one, the soil was isotropically consolidated to the in-
situ effective stress of p′ = 323 kPa (series ”IC” by
Nishimura et al. 2007). In the second one, the initial
conditions represented the estimated anisotropic in-
situ stress state of p′ = 323 kPa and q =−166 kPa (se-
ries ”AC” by Nishimura et al. 2007). In both cases, the
soil was sheared after consolidation under undrained
conditions with controlled vertical strain. Total stress
path was defined by constant total mean stress and
constant values of variables αdσ and b. These were
defined as

αdσ =
1

2
tan−1

(

2∆τzθ
∆σz −∆σθ

)

(23)

b =
σ2 − σ3

σ1 − σ3
(24)

where σ1, σ2 and σ3 are the major, intermediate and
minor principal stresses respectively and σz, σθ and
τzθ are rectilinear stress components in the specimen
frame of reference (see Nishimura et al. 2007). No-
tation of stress state within the hollow cylinder speci-
men is clarified in Fig. 1. The value of b represents the
contribution of the intermediate principal stress such
that in the standard compression experiment in triax-
ial apparatus b= 0. Only simulations with b = 0.5 are
presented here for brevity. αdσ represents the prin-
cipal stress inclination revealing soil anisotropy. In
the standard triaxial test, αdσ = 0◦ for the vertically
trimmed specimen and αdσ = 90◦ for the horizontally
trimmed specimen.

The parameters ϕc, λ∗ and κ∗, calibrated using
data by Gasparre (2005), were taken over from Mašı́n
(2009). The parameter N was adjusted so that the soil
overconsolidation manifested by the undrained stress
paths was predicted properly. The initial value of void
ratio e= 0.69 was calculated from the specimen water
content and specific gravity provided by Nishimura
et al. (2007). The parameters Ag, ng and αG were cal-
ibrated using resonant column apparatus tests on Lon-
don clay, as demonstrated in Figs. 2 and 3. Empirical
expressions were adopted for αE (13) and αν (14).
νpp was estimated using stress-strain curves of shear
tests at large strains, see Fig. 4. Intergranular strain
parameters R, βr and χ were calibrated using stiff-
ness degradation curves from hollow cylinder tests.
An example of such a curve is given in Fig. 5.

Figure 1: Stress state within the hollow cylinder specimen (figure
from Nishimura et al., 2007).
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Figure 2: Calibration of the parametersAg and ng using resonant
column apparatus experiments by Nishimura (2005).
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Figure 3: αG calibration based on experiments by Nishimura
(2005) and Gasparre (2005).

The material parameters adopted in all the simula-
tions are in Tabs. 1 and 2. Predictions by the proposed
model have been compared with predictions by the
model by Mašı́n (2005).

Stress paths of various tests are in the p′ vs. (σz −
σθ)/2 stress space plotted in Fig. 6. Stress-strain
curves (q/p′ vs. the principal strain difference ǫ1− ǫ3)
are presented in Figs. 7 and 8. The soil anisotropy
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Figure 5: Secant shear stiffness degradation as measured by
Nishimura (2005) in hollow cylinder test with αdσ = 23◦ and
b = 0.5 and predictions by the proposed model.

is revealed by the deviation of the stress path from
vertical (constant p′). The proposed model predicts
the stress path inclination properly for both isotropi-
cally and anisotropically consolidated specimens. The
stress paths deviate from the experimental after the
peak of q/p′, but this may be explained by the spec-
imen rupture and strain localisation into shear bands
(see Nishimura et al. (2007) for indication of the pre-
rupture stress path portions). Predictions by the model
by Mašı́n (2005) are also shown in Figs. 6, 7 and 8

Table 1: Parameters of the intergranular strain concept by
Niemunis and Herle (1997) adopted in combination with differ-
ent hypoplastic models.

Ag/mR ng mrat/mT

proposed model Ag = 270 1 mrat = 0.5
Mašı́n (2005) model mR = 8 n/a mT = 4

R βr χ
proposed model 5× 10−5 0.08 0.9

Mašı́n (2005) model 5× 10−5 0.08 0.9

Table 2: Parameters of the hypoplastic models used in simula-
tions.

ϕc λ∗ κ∗

proposed model 21.9◦ 0.095 0.015
Mašı́n (2005) model 21.9◦ 0.095 0.015

N νpp/r α
proposed model 1.19 νpp = 0.1 2

Mašı́n (2005) model 1.19 r = 0.3 n/a

for comparison. This model predicts some degree of
stress-induced anisotropy in the anisotropically con-
solidated specimens, but its degree cannot be con-
trolled by a parameter and in the present case it is
clearly underestimated. The response of the isotrop-
ically consolidated specimens is incorrectly predicted
as initially isotropic by the Mašı́n (2005) model.
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Figure 6: Stress paths in the p′ vs. (σz − σθ)/2 stress space:
Experimental data by Nishimura et al. (2007), proposed model
and Mašı́n (2005) model predictions.
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Figure 7: The ratio q/p′ vs. the principal strain difference ǫ1− ǫ3
for the IC series: Experimental data by Nishimura et al. (2007),
proposed model and Mašı́n (2005) model predictions.

Finally, charts in Fig. 9 show strain evolution fol-
lowed in the isotropically consolidated test with b =
0.5 and αdσ = 23◦ (data from Nishimura (2005)). The
models predict the strain evolution accurately. The
anisotropy is revealed by slightly negative values of
the radial strain ǫr, which are predicted by the pro-
posed model only.

SUMMARY AND CONCLUSIONS

A new version of clay hypoplasticity model is pre-
sented for predicting stiffness anisotropy. The model
is based on the reference model by Mašı́n (2012b),
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Figure 8: The ratio q/p′ vs. the principal strain difference ǫ1− ǫ3
for the AC series: Experimental data by Nishimura et al. (2007),
proposed model and Mašı́n (2005) model predictions.

in which the stiffness tensor L is replaced by an
anisotropic elasticity tensor. The model has been
evaluated using comprehensive data set on London
clay, which includes measurements of the influence
of anisotropy in the hollow cylinder apparatus. It is
demonstrated that the proposed model predicts not
only the influence of anisotropy on the very small
strain stiffness, but it also improves predictions of
undrained stress paths.
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Figure 9: Strain paths measured in the isotropically consoli-
dated test with b = 0.5 and αdσ = 23◦. Experimental data by
Nishimura (2005).
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Mašı́n, D. (2009). 3D modelling of a NATM tunnel in high
K0 clay using two different constitutive models. Jour-
nal of Geotechnical and Geoenvironmental Engineering
ASCE 135(9), 1326–1335.
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