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Abstract 
 
A rearrangement of the hypoplastic constitutive equation is proposed that enables the incorporation of 

an asymptotic state boundary surface of an arbitrary pre-defined shape into the model, with any 

corresponding asymptotic strain rate direction. This opens the way for further development of 

hypoplastic models. To demonstrate the flexibility of the proposed approach, a hypoplastic equivalent 

of the Modified Cam-clay model is developed. A comparison of the predictions of the elasto-plastic 

and hypoplastic models reveals the merits of the hypoplastic formulation. While both models predict 

the same asymptotic states, hypoplasticity predicts a smooth transition between overconsolidated and 

normally consolidated states, and thus accounts for the non-linearity of the soil behaviour inside the 

state boundary surface in a natural manner. 
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Introduction 
 
Over the past two decades, hypoplasticity has proven to be a powerful approach to predict the non-

linear behaviour of soils. Early hypoplastic models were developer from sound physical assumptions 

by means of trial-and-error procedures (see Kolymbas 1991). These models represented the soil 

behaviour reasonably well, but their parameters did not have any clear physical meaning. 

 

Throughout the development of hypoplasticity, several milestones can be identified, and these 

are often related to predictions of asymptotic states. An asymptotic state is that reached 

asymptotically after sufficiently long stretching with a constant strain rate direction (see Gudehus and 

Mašín 2009). An envelope of asymptotic states plotted in the stress vs. void ratio space forms a so-

called asymptotic state boundary surface (ASBS) (Mašín 2012). In elasto-plastic models, such as the 

Modified Cam-clay model (Roscoe and Burland 1968), the ASBS coincides with the state boundary 

surface. It is, in turn, formed by the combination of the yield surface and a hardening law. 

 

The first advance in incorporating asymptotic states into hypoplasticity was attributed to Gudehus 

(1996) and Bauer (1996). They realised that a certain combination of constants in the early model 

caused it to asymptotically predict the shear failure at a constant volume. They also introduced normal 

compression and critical state lines into the model,  thus incorporating the critical state behaviour. von 

Wolffersdorff (1996) then modified the model so that the critical state locus coincided exactly with the 

condition proposed by Matsuoka and Nakai (1974). Later, Niemunis (2002) put forward a general 

approach to incorporate an arbitrary pre-defined critical state locus into hypoplasticity. His procedure 

was adopted by Mašín (2005) as a basis for developing a model for clays. Subsequently, Mašín and 

Herle (2005) proposed a way to extract the complete shape of the ASBS from the hypoplastic 

equation. Its shape was shown to depend on the material parameters, while only isotropic and critical 

asymptotic states were pre-defined. The complete shape of the ASBS thus could not be prescribed a 

priori, as is normally done in elasto-plastic models. This property of hypoplasticity has been regarded 

as its serious limitation. 

 

In this Note, the next step in the development of hypoplastic models is presented. It is shown that the 

hypoplastic equation can be,rearranged, in a relatively straightforward manner so that the model 

predicts any arbitrary pre-defined shape of ASBS and asymptotic strain rate direction. To demonstrate 

the proposed approach, a hypoplastic model with ASBS and a flow rule of the Modified Cam-clay 

model is developed. 

 

Notations and Conventions: ‖ ‖ represents the Euclidean norm of  , defined as ‖ ‖  √   . The trace 

operator is defined as        ;   and   denote second- and fourth-order unity tensors, respectively. 

Following the sign convention of continuum mechanics, compression is taken as negative. However, 



the mean stress   -       is defined as positive in compression.    represents the stress deviator 

       . 

 

Explicit incorporation of an asymptotic state boundary surface 
into hypoplasticity 
 

A general formulation of the hypoplastic model may be written as (Gudehus 1996) 

 

 ̇         ̇     ‖ ̇‖           (1) 

 

where  ̇ and  ̇ are the stress and strain rate tensors respectively
1
,   and   are fourth- and second-order 

constitutive tensors,    is the factor controlling the influence of mean stress (barotropy factor) and    is 

the factor controlling the influence of relative density (pyknotropy factor). 

 

To evaluate the model response at the ASBS, we will interpret it in the stress space normalised 

by the size of the constant void ratio cross-section through the ASBS. It is given by the Hvorslev 

equivalent pressure   
 , defined as a mean stress at the isotropic normal compression line at the current 

void ratio  . The normalised stress thus reads        
 
 and it follows that 
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The following derivations are for normal compression lines linear in the         vs.          plane 

(   is the reference stress of 1 kPa), but other expressions may also be introduced. The isotropic 

normal compression line can be written as 
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where   and   
 are model parameters. It follows that 
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and thus 
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Combining (5), (2) and (1) implies that 
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During asymptotic stretching the stress state remains fixed in the    space (Mašín and Herle 2005), 

provided that the constant void ratio cross-sections through the ASBS differ only in size and not in 

shape. This condition implies  ̇   . It then follows from (2) that 
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where   
  is the value of    at the ASBS and  ̇ 

 is the asymptotic strain rate corresponding 

to the given stress state. Eq. (7) can be manipulated in the following way: 

 

                                                           
1
 To be precise,  ̇ represents the objective (Jaumann) stress rate and  ̇ is the Euler stretching tensor. 



 (
 

       ̇
        ̇

 )      
  ‖ ̇ ‖        (8) 

     ̇      
  ‖ ̇ ‖          (9) 

          
            (10) 

 

where 

 

       
 

               (11) 
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Eq. (10) implies that 

 

   
   

    
            (13) 

 

Combining (13) with (1) yields an alternative expression of the hypoplastic model 

 

 ̇        ̇  
  

  
     ‖ ̇‖         (14) 

 

An arbitrary shape of the ASBS can be incorporated into hypoplasticity with the aid of Eq. (14), by 

appropriate specification of the dependency of   
 

 on the void ratio and stress ratio. The corresponding 

asymptotic direction of the strain rate is then prescribed by  . This can be done independently of the 

selected expression for the tensor  . 

 

Hypoplastic Cam-clay model 
 
To demonstrate development of a hypoplastic model using Eq. (14), this section will outline the 

formulation of a hypoplastic equivalent of the Modified Cam-clay model. Slight modifications to the 

original elasto-plastic formulation are introduced to maximise the model simplicity, and are not 

generally required. In particular, normal compression lines linear in the         vs.           plane 

(Butterfield 1979) were considered. In the Modified Cam-clay model, the ASBS is elliptic in the   vs. 

  plane for a constant preconsolidation pressure   .On the other hand, in the hypoplastic formulation, 

the ASBS is elliptic for constant   
 . Finally, the asymptotic total strain rate tensor is assumed to be 

normal to the ASBS in the hypoplastic model, while in the elasto-plastic case the associated flow rule 

implies that the plastic strain rate tensor is normal to the ASBS. 

 

The tensor   is represented by isotropic elasticity, i.e. 

 

    
 

     
             (15) 

 

where the parameter   controls the proportion of bulk and shear stiffness. Effectively, it 

regulates the shear stiffness, since the bulk stiffness in the model is controlled by the parameters    

and    (as shown later). 

 

The following expression for the factor   , which governs the non-linear behaviour inside the 

state boundary surface, is chosen: 

 

   
  

  
             (16) 

 



Note that the model formulation is not restricted to the particular form given by (16), and different 

formulations can also be used. In the   vs.   plane the ASBS has an elliptic shape, prescribed by the 

yield function   of the Modified Cam-clay model (with   
 
 in place of   ): 

 

                 
          (17) 

 

where   is the slope of the critical state line in the   vs.   plane and   √   ‖  ‖. It follows from 

Eq. (17) that for the given stress ratio      , the value of mean stress at the ASBS    is 
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  is then expressed as   

        
 
 (from (16)), and the ratio      

 
 needed in Eq. (14) reads as 
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The asymptotic strain rate direction   is assumed to be normal to the ASBS, following the Modified 

Cam-clay formulation, although any other direction can be adopted instead. In the present case, 
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where    . It follows from Eq. (17) that       at the ASBS at current stress ratio      reads 
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Combination of (21) with (18) yields 
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          (22) 

 

The last component of the model to be defined is the factor   . It is specified to ensure that the slope of 

the isotropic unloading line in the         vs.       plane, for unloading starting from the isotropic 

normally consolidated state, is given by   . Note that the slope   
 of the isotropic normal compression 

line is already implicit in the model formulation, since it has been adopted as a primary assumption in 

the derivation of the tensor  . Algebraic manipulations with the above tensorial equations reveal that 

for unloading (volume increase,  ̇   ), the isotropic form of the model is given as: 
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Eq. (23) can be compared with   ̇             ̇  , which leads to an expression for    
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A complete formulation of the hypoplastic Cam-clay model can finally be written as 
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     )    ‖ ̇‖       (25) 

 

with    given by (24),   by (15),   by (22) and   
 
 by (4). 

 

 



Model predictions 
 
In this section, predictions by the proposed hypoplastic model are compared with predictions obtained 

using the elasto-plastic Modified Cam-clay model
2
. The model parameters are given in Table 1. 

Different values of parameters   were adopted in the two models to predict comparable stiffness in 

shear. 

 

[Table 1 about here.] 

 

Figure 1 shows constant void ratio cross-sections through the ASBSs of the two models and the 

response envelopes for different states. For details on the representation of tangential stiffness using 

response envelopes see Gudehus and Mašín (2009). As was explained in that paper, and as is clear 

from Fig. 1, the response envelopes of hypoplasticity are translated ellipses, whereas response 

envelopes of elasto-plasticity are at the ASBS composed of two elliptic sections centered about the 

reference state. 

 

[Figure 1 about here.] 

 

In Figure 2, predictions of drained triaxial tests are shown. All the samples were tested at the same 

void ratio       , but at different cell pressures (different overconsolidation ratios). Hypoplasticity 

and elasto-plasticity yield similar asymptotic large-strain predictions. However, before reaching the 

peak strength, hypoplasticity, unlike elasto-plasticity, predicts a non-linear response inside the ASBS 

with gradually decreasing stiffness. It also predicts a lower peak strength at the overconsolidated state 

than the elasto-plastic model. Hypoplastic formulation thus effectively eliminates two major 

shortcomings of the Modified Cam-clay model. 

 

[Figure 2 about here.] 

 

Figure 3a shows predictions of an isotropic loading and unloading test with several 

unloading/reloading cycles. The two models predict the same slope and position of the isotropic 

normal compression line, and the same slope of the unloading line at the isotropic normally 

consolidated state. In addition, hypoplasticity also predicts the non-linear response inside the ASBS. It 

does not predict the hysteretic unloading/reloading behavior, however. This shortcoming can be 

eliminated by adopting an enhancement introduced by Niemunis and Herle (1997). Fig. 3b shows   vs. 

  stress paths obtained in cyclic undrained triaxial tests. While elasto-plasticity predicts a stress path 

with constant   inside the ASBS, hypoplasticity yields stress paths with a butterfly-like shape. The 

final (critical) state is practically the same in both cases (the difference seen is only attributed to subtle 

differences in the asymptotic state formulations of the two models). 

 

[Figure 3 about here.] 

 

Finally, Fig. (4) shows results of proportional compression tests (tests with constant direction of  ̇). 

The tests differ in the value of the angle   ̇, which has been defined by Gudehus and Mašín (2009). 

  ̇     represents isotropic compression, whereas   ̇      represents constant volume (undrained) 

compression. Although the final (asymptotic) states predicted by the two models are similar, 

hypoplasticity again predicts a smoother transition between the overconsolidated and normally 

consolidated response. 

 

[Figure 4 about here.] 

 
 

                                                           
2
 A modification of the model adopting normal compression line by Eq. (3) has been used in simulations. 



Conclusions 
 
A new approach for the incorporation of the asymptotic state boundary surface of an arbitrary shape 

into hypoplastic models has been proposed. Unlike in the existing hypoplastic models, the ASBS can 

now be defined explicitly, and it is independent of the adopted expression for the tensor  . To 

demonstrate the proposed approach, a hypoplastic equivalent of the Modified Cam-clay model was 

developed. A comparison of the predictions of the elasto-plastic and hypoplastic models reveals 

several advantages of using the hypoplastic formulation. It predicts the non-linear response inside the 

ASBS and shows a gradual transition between normally consolidated and overconsolidated states. The 

proposed approach opens the way for further development of hypoplastic models. 
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Figure 1: Constant void ratio cross-sections through the asymptotic state boundary surfaces
and response envelopes predicted by the two models. (a) hypoplasticity, (b) elasto-plasticity.
σ1 and σ2 are axial and radial stresses respectively.
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Figure 2: Predictions of drained triaxial tests for the same void ratio and different radial
stresses (labels for cell pressures).
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Figure 3: (a) Isotropic test with several unloading/reloading cycles and (b) cyclic undrained
triaxial test.
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Figure 4: Proportional compression (constant direction of ǫ̇) on initially overconsolidated
soil. Indicated are values of ψ ˙̇

ǫ
, as defined by Gudehus and Maš́ın (2009). Only selected

paths shown in (b) for clarity.
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