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Abstract The concept of the asymptotic behaviour

of particulate materials is described, including its en-

hancement by considering asymptotic states in exten-

sion. A 3D discrete element model with elastic spherical
particles and the granulometry of a real sand is set up.

The numerical sample is stretched from different initial

states, and the influence of the strain rate direction on
the final state is studied within the stress ratio, void

ratio and mean stress space. Asymptotic behaviour is

clearly observed, although the grains remain intact (no
grain crushing is considered). The extension asymptotic

states are observed, and the notion of a normal exten-

sion line is introduced. The extension asymptotic states

coincide with the peak states observed in the shear tests
with constant stress path direction in dense samples.

Keywords asymptotic behaviour · critical state ·
discrete element method · particle crushing · sand

1 Introduction

Asymptotic behaviour is one of the most striking fea-

tures in the behaviour of granular materials. Specific
asymptotic states have been known since the early stud-

ies of soil mechanics. Casagrande [4], Hvorslev [27] and

Taylor [60] are among the pioneers who observed crit-

ical state behaviour of soils – a particular asymptotic
state related to constant volume shearing. Schofield and

Wroth [54] and Roscoe and Burland [52] combined the

existence of critical states and compression asymptotic
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states (revealed in normal compression behaviour) into

a unified framework of critical state soil mechanics.

More generally, Gudehus et al. [24,21] understood asymp-

totic states to be attractors in the behaviour of granu-
lar materials, which are independent of the initial state.

They proposed that each direction of strain rate with

a volume decrease is uniquely linked to a particular
asymptotic stress ratio and a particular path in the

mean stress vs. void ratio plane (normal compression

line). Gudehus [22] later argued that the asymptotic
stress ratio should not be expected to remain constant

in the course of loading because of grain crushing and

changing granulometry. The asymptotic state has also

been denoted as the state limit [25], or the swept-out-
memory state [24]. More recently, Gudehus [23] and

Gudehus and Maš́ın [25] have extended the asymptotic

state concept into the volume increase (extension) regime,
and identified theoretical limits to the asymptotic be-

haviour. The ”extension asymptotic states” have not

yet been observed experimentally.

Asymptotic behaviour has been the subject of ex-

perimental investigation; critical state and normal com-
pression behaviour have been well documented. More

generally, compression asymptotic states have been stud-

ied, and confirmed, by Goldscheider [20] and Chu and
Lo [9], who performed true and axisymmetric triaxial

tests on sands with strain path control. They observed

a unique relationship between the strain path direction
and asymptotic stress ratio. Asymptotic behaviour has

also been studied by testing fine-grained soils (clays),

most notably by Topolnicki et al. [61]. They observed

that the stress paths of tests starting at an arbitrary
state became parallel to the asymptotic path in some

cases. Further insight into the micro-mechanics of gran-

ular materials has been given, for example, in [19].
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Another means of investigating the asymptotic state

is the discrete element method (DEM). Different au-
thors typically focused on specific asymptotic states;

the existence of the critical state is confirmed in [56,

53,65,48,7,8,67]. Salot et al. [53] and Wang et al. [65]
demonstrated that the value of the critical state fric-

tion angle depends on the particle shape. The influ-

ence of the particle shape on the asymptotic behaviour
was also emphasized in [30,17,33,38,57]. Luding and

Alonso-Marroqúın [36] observed that the critical state

friction angle was constant for non-adhesive contact be-

haviour, but showed a pressure dependence for adhesive
inter-particle contacts. For further details of the theo-

retical investigation of the micromechanics of granular

assemblies, the reader is referred to [1,51,32] and the
references therein.

A number of authors argued that the existence of

asymptotic states is directly linked to particle crush-

ing [64,2,7,8,44,45,43]. Using DEM simulations, the

existence of normal compression lines was explained by
particle crushing in references [64,2,7,8,44]. Cheng et

al. [7,8] predicted both critical states and normal com-

pression lines, using the same parameter sets, creating
a more complete picture of the granular material be-

haviour. They argued that particle crushing is a cause

of the asymptotic behaviour.

The aim of this paper is to provide a detailed char-

acterisation of the asymptotic behaviour of particulate
materials. After introducing the asymptotic state frame-

work, a comprehensive DEM model is set up. Using

this model, numerical experiments were performed to
reveal the asymptotic states. This included characteris-

tics that have not been investigated before, such as the

asymptotic behaviour in extension. It is also discussed

whether particle crushing is a cause, or a consequence,
of the asymptotic properties of granular assemblies.

2 Asymptotic state framework

Asymptotic state is defined as that state reached after a

sufficiently long proportional stretching, i.e. stretching

with a constant direction of the strain rate. Conceptual
representation of asymptotic states has been proposed

by Gudehus [23] and Gudehus and Maš́ın [25]. In this

work, we focus on axisymmetric stress and deforma-
tion states, where the strain rate tensor is fully charac-

terised by axial ǫ̇a and radial ǫ̇r components. Similarly,

the stress tensor is given by σa (axial stress) and σr
(radial stress). It is assumed that the granular material
behaviour is governed only by its stress state and void

ratio e (defined as the void volume over the solid vol-

ume). The strain rate direction may be characterised

by an angle ψǫ̇ (see Figure 1a), and the stress obliquity

is quantified by the angle ψσ (Figure 1b).
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Fig. 1 Definition of angles ψǫ̇ and ψσ [25]. ”i” denotes
the isotropic direction, ”c” denotes the isochoric (constant
volume) direction, and ”d” denotes the theoretical limit for
asymptotic state behaviour.

2.1 Compression and constant volume asymptotic
states

According to the current understanding of the asymp-
totic behaviour of a granular assembly, proportional

deformation (constant ψǫ̇) will ultimately lead to an

asymptotic state characterised by a constant ψσ. Not

all stretching directions will, however, lead to a unique
asymptotic state. First, we focus on compression and

constant volume stretching paths, characterised by a

volume decrease (constant volume in the limiting case)
and −90◦ ≤ ψǫ̇ ≤ 90◦. These directions of ψǫ̇ are repre-

sented in Figure 2a. Isotropic compression1 ψǫ̇ = 0◦ is

indicated with the index ’i’; limiting values ψǫ̇ = ±90◦

(constant volume shearing) with the index ’c’. Each ψǫ̇

is related to a unique asymptotic value of ψσ, as demon-

strated in Figure 2b. In the special case of isochoric de-

formation (±c, critical state), the corresponding value
of ψσ is directly linked to the critical state friction angle

by

tanψσ(±c) = ±
(

2
√
2 sinϕc

3∓ sinϕc

)

=

√
2

3
M (1)

where M = q/p at the critical state (p = (σa + 2σr)/3,

q = σa − σr). Each of the asymptotic states also have

a unique trace in the mean stress p vs. void ratio e
plane (Figure 2c). Asymptotic states in this plane are

traditionally denoted as normal compression lines. In

some soils (mainly clays), they are found to be linear in

1 Note that the isotropic asymptotic state is defined here
by ψǫ̇ = 0◦; the corresponding asymptotic ψσ may then differ
from 0◦ in the case of anisotropic structure.
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the ln p vs. ln(1 + e) plane [3], but this is not a general

rule. All normal compression lines are bound between
isotropic normal compression line, attributed to ψǫ̇(i),

and the critical state line, linked with ψǫ̇(±c). Different

measures have been defined throughout the literature to
represent the position of the given normal compression

line. The two most commonly used are the relative void

ratio re and the overconsolidation ratio OCR2

re =
e− ed
ec − ed

OCR =
p∗e
p

(2)

where ed and ec are minimum and critical state void
ratios at the current mean stress respectively. p∗e is

the Hvorslev equivalent pressure, defined as the mean

stress at the isotropic normal compression line at the
current void ratio. It is clear that the isotropic nor-

mal compression line is characterised by re = rei > 1

and OCR = 1, and the critical state line by re = 1

and OCR = OCRc > 1. Each of the compression
asymptotic states can be attributed to a unique value

of 1 ≤ re ≤ rei, or OCRc ≥ OCR ≥ 1.

Compression asymptotic states are predicted by con-
stitutive models based on the critical state theory, such

as the Modified Cam clay model [52], or hypoplastic

models [66,39,40]. The models incorporate the notion
of a state boundary surface (SBS), which is defined

as a boundary of all possible states in the stress vs.

void ratio space. For the purpose of the present dis-

cussion, we also define the asymptotic state boundary
surface (ASBS) (also known as the swept-out-memory

surface [41]), which is an envelope of all asymptotic

states. Critical state soil mechanics models consider the
two surfaces to coincide. A constant void ratio cross-

section through this surface in the compression regime

is sketched in Figure 2d. In the principal stress vs. void
ratio space, the ASBS is a four-dimmensional object;

this is shown in Figure 3d for the axisymmetric case.

An important property of compression asymptotic

states is that they may be reached by proportional com-
pression from the stress-free state.

2.2 Extension asymptotic states

Asymptotic behaviour in compression and under con-

stant volume is considered to be a well-proven prop-

erty of a granular assembly. However, the contrary is
true regarding asymptotic behaviour in extension. As

suggested by Gudehus [23] (Chapters 2 and 3) and

Gudehus and Maš́ın [25], asymptotic states can also

2 OCR is traditionally defined as OCR = pc/p, where pc
is the preconsolidation pressure. We prefer the definition (2),
as no additional assumptions about the quasi-elastic soil be-
haviour are needed for its quantification.
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Fig. 2 Graphical representation of compression asymptotic
states. Zones relevant to asymptotic states in compression are
highlighted in grey.

2σr

aσ

i

c

−c

e

−d

d

Fig. 3 Sketch of the asymptotic state boundary surface in
the stress vs. void ratio space for the axisymmetric case.

be reached after proportional stretching along exten-
sion (volume increase) paths. These asymptotic states

have, to the author’s knowledge, not yet been observed

experimentally; their existence is expected solely from

theoretical arguments. The stretching directions that
lead to extension asymptotic states are depicted in Fig-

ure 4a. Limiting values of ψǫ̇ and ψσ are denoted with

indices ’d’ (asymptotic σr = 0) and ’-d’ (asymptotic
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σa = 0) [25]. The maximum values of |ψσ| at the lim-

iting states ±d correspond to mobilised friction angles
equal to 90◦. The relationship between ψǫ̇ and ψσ for

asymptotic extension paths is shown in Figure 4b.
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Fig. 4 Graphical representation of extension asymptotic
states. Zones relevant to asymptotic states in extension are
highlighted in grey.

Each extension asymptotic state is also associated

with its trace in the mean stress vs. void ratio plane.

In the following, we denote these traces as normal ex-

tension lines (adopting a parallel with the well-known

notion of normal compression lines), seen in Figure 4c.

Gudehus [23] suggested that the minimum void ratio
ed represents a normal extension line for states ±d. Be-
cause proportional stretching along extension asymp-

totic states involves volume increase and mean stress

decrease, these states cannot be approached from the
stress-free state.

Interestingly, although knowledge of the extension
asymptotic states is scarce, these states are predicted

by virtually all constitutive models based on critical

state soil mechanics (for example, [52,66,39,37]). The

reason for this may be explained with the aid of Figure
4d, which shows a complete ASBS of a granular ma-

terial, with the highlighted portion corresponding to

the extension asymptotic states. The models were de-

aε.

2ε r
.

d

i

c

−c
−i

−d

AB

C

(a)

0

100

200

300

400

0 100 200 300 400

σ 1 
 [k

P
a]

σ2 √2 [kPa]

B

C

A isot.

crit.

crit.

(b)

0.52

0.54

0.56

0.58

0.6

0.62

10 20 30 50 100 200 300

ln
(1

+
e)

 [-
]

p [kPa]

A

C B

eiec

final state

(c)

Fig. 5 Asymptotic properties of the hypoplastic model de-
veloped by Maš́ın [39]. The simulations are from [25].

veloped to correctly represent the so-called peak states.

Peak states are attained after loading with the stress
paths in a fixed direction (for example, a drained triax-

ial test, which is characterised by σ̇r = 0). It has been

shown experimentally that such loading, from the ini-
tial state with re < 1 (OCR > OCRc), leads to a higher

mobilised friction angle than that which corresponds to

±c states. The strain rate at the peak state is dilatant.

To represent this behaviour, the SBS for re < 1 extends
into the region of |ψσ| > |ψσ(±c)|, with |ψǫ̇| > |ψǫ̇(±c)|,
as depicted in Figure 4d.

As mentioned earlier, ASBS in the critical state mod-
els is considered to coincide with the SBS. For this rea-

son, constitutive models based on critical state soil me-

chanics implicitly predict extension asymptotic states,
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although the model developers did not specifically aim

to predict them.

To demonstrate the asymptotic property of consti-
tutive models, Figure 5 shows the predicted compres-

sion (path ”A”), constant volume (path ”B”) and ex-

tension (path ”C”) asymptotic state using the criti-
cal state soil mechanics-based hypoplastic constitutive

model of Maš́ın [39]. This model is capable of predicting

all three types of asymptotic states; the explicit mathe-

matical formulation of the asymptotic states predicted
by this model are given in [41].

3 Discrete element model characteristics

In order to model the granular assembly, the open-

source 3D discrete element software Yade [63] was used.
This software utilises the DEM formulation by Cun-

dall and Strack [13]. The algorithm involves two steps:

First, based on constitutive laws, the interaction forces
between the discrete elements are computed. The ele-

ments are allowed to slightly interpenetrate each other,

which actually represents the relative deformation of

the surface layers of the particles [12]. Second, New-
ton’s second law is applied to determine, for each el-

ement, the resulting acceleration, which is then time

integrated to find its new position. This process is re-
peated until the simulation is finished [55,15]. Chen et

al. [6] demonstrated that the Yade software yields com-

parable predictions to the commercial software package
PFC [28].
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Fig. 6 Grain size distribution of Zbraslav sand from [16],
and the reduced grain size distribution adopted in the simu-
lations.

We present the results for a specimen consisting of

elastic spherical particles. To eliminate the influence

of the model boundaries, periodic boundary conditions
have been adopted [46], so that the modelled unit cell

(as well as all its particles and all their properties) is

surrounded by identical cells shifted along the cell edges

Fig. 7 Periodic cell used in the simulations, consisting of
150000 spherical particles.

[58]. In order to resemble a real granular material, par-

ticles of different sizes have been considered following

the grain-size-distribution curve of a real sand. Figure
6 shows grain size distribution of Zbraslav sand [16].

For the purpose of the discrete element modelling, par-

ticles above 1 mm and below 0.2 mm were removed
from the specimen (”reduced GSD” in Figure 6). The

sample consisted of 150000 spherical particles, gener-

ated using an algorithm to ensure that they followed
the prescribed particle size distribution, were randomly

distributed, and were initially not in contact. The pe-

riodic cell was cubic, with the initial side length of 31

mm. The specimen was generated only once and used
in all subsequent simulations; all the results thus rep-

resent the response of an identical sample. It has been

verified that practically identical results were obtained
if new sample was generated in each simulation. The

specimen in its initial state is depicted in Figure 7.

The contact properties of the spherical particles were

governed by a basic linear elastic perfectly plastic model

without cohesion [13], which specifies the contact nor-

mal stiffness kn, shear stiffness ks and friction angle ϕ.
These parameters are calculated from the particle prop-

erties E (Young’s modulus), ν (Poisson’s ratio) and ϕ.

In the present simulations, constant values E = 500
MPa, ν = 0.3 and ϕ = 0.5 Rad (coefficient of fric-

tion µ = 0.546) have been used. The rolling resistance

(rotational spring) was not considered. The prescribed
particle density was ρs = 2650 kg/m3 and acceleration

due to gravity was zero. The influence of selected con-

tact parameter values is clarified in Sec. 5.

The periodic cell boundaries were subjected to a

constant velocity gradient ∇v, which means to constant

value of the Euler stretching tensor D = (∂vi/∂xj +
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∂vj/∂xi)/2, as no rotations have been considered. Ax-

isymmetric conditions were applied, such that D22 =
D33 (subscripts 2 and 3 represent the horizontal direc-

tions, 1 the vertical direction). The angle ψǫ̇ can then be

calculated by means of Figure 1a, where ǫ̇a = D11 and
ǫ̇r = D22 = D33. Off-diagonal components of D are al-

ways zero. A constant magnitude of the stretching rate

‖D‖ =
√
D : D = 167s−1 and step size∆t = 1.2∗10−7 s

was applied at all times. Local non-viscous damping [11,

5], has been used, with a damping coefficient χ = 0.5.

The influence of the selected step size and stretching

rate is discussed in more detail in Sec. 5.

The simulation results have been evaluated in terms
of the Cauchy stress tensor σ and void ratio e. The void

ratio has been calculated from the current cell size and

total particle volume (particle overlaps have thus been
neglected). The macroscopic stress σ was obtained from

the inter-particle forces using the procedure outlined

in [31]. The angle ψσ was calculated using Figure 1b,

with σa = σ11 and σr = (σ22 + σ33)/2 (note that the
slight difference between σ22 and σ33 has occured due

to the initial random inhomogeneities of the sample).

Only positive values of the angle ψǫ̇ were considered in
this study.

An increase in the magnitude of particle overlaps

decreases the accuracy and the physical relevance of

the simulations; this overlap magnitude is quantified in

Figure 8, where the distribution of the relative overlap
magnitude is plotted for several stress levels along the

ψǫ̇ = 0◦ asymptotic stress path. At around a stress of

1MPa, the maximum relative overlap magnitude reaches
2%. The stress of 1MPa is considered to be an approx-

imate limit of accuracy for the present simulations. At

10 MPa the relative overlaps reach 10%, which renders
the results unreliable. At stresses lower than 100 kPa

the relative overlaps are small, lower then 0.5%. Figure

8 also demonstrates that an increase in the stress level

is associated with a dramatic increase in the number of
inter-particle contacts.

4 DEM simulation results

4.1 Compression and constant volume asymptotic

states

First, we investigate the compression and constant vol-

ume asymptotic states. Figure 9 shows results on a sam-

ple loaded uniformly along the path ψǫ̇ = 0◦, together

with the results of a test where the loading direction
was reversed several times to ψǫ̇ = 180◦. The uniformly

loaded sample clearly defines an isotropic normal com-

pression line, which is approximately linear in the ln p
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vs. ln(1 + e) plane. The sample with the unloading-

reloading cycles shows that the isotropic normal com-

pression line is asymptotically approached irrespective

of the initial soil density (apart from the minor ”over-
shooting” in the first reloading cycle, which may be

attributed to inertia effects). The normal compression

behaviour was observed on an assembly of elastic (non-
crushable) spheres; it is thus not related to grain crush-

ing. Instead, grain crushing may be regarded as an even-

tual consequence of stress concentration during loading
along the normal compression line.

Secondly, we study the constant volume asymptotic

state (ψǫ̇ = 90◦). Figure 10 shows the results of constant

volume experiments on normally consolidated samples.
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Fig. 10 ψǫ̇ = 90◦ tests on normally consolidated samples. (a) sketch of the stress paths expected from the theory, (b,c,d)
results of DEM simulations. (b) ψσ vs. mean stress diagram, (c) normal compression lines in the ln(1 + e) vs. log p plane, (d)
ψσ vs. ln(1 + e) diagram.

The samples were first loaded along the ψǫ̇ = 0◦ path
up to the prescribed value of the mean stress. Then, the

direction of loading was changed to ψǫ̇ = 90◦ and the

samples were sheared until the asymptotic state was
reached. The same procedure (with variable ψǫ̇) was

adopted in all subsequent simulations on normally con-

solidated (NC) samples. Figure 10a gives a sketch of
the stress path followed, Figure 10b shows the p vs. ψσ

path, Figure 10c the ln(1+e) vs. ln p response and Fig-

ure 10c the ψσ vs. ln(1 + e) diagram. The final states

appear to align along a single curve in the p vs. ψσ

plane, but this curve is not represented by a constant

value of ψσ. This is discussed in more detail in Sec. 5.

The final states in the ln(1 + e) vs. ln p plane form a
clearly defined critical state line. This line is approx-

imately parallel to the isotropic normal compression

line, apart from the larger stresses, where the results
are influenced by the final compressibility of the grains

and consequent non-negligible overlapping of particles

(see Figure 8).

Another set of numerical experiments was devised
(Figure 11) to investigate the independence of the iso-

choric asymptotic state on the initial conditions. The

samples were first loaded along the ψǫ̇ = 0◦ path until
p = 1000 kPa, then unloaded along the ψǫ̇ = 180◦ path

until different prescribed mean stresses were reached,

and finally sheared along ψǫ̇ = 90◦ path up to the
asymptotic state. The same procedure was adopted in

all subsequent simulations on overconsolidated (OC)

samples. All the samples thus had a similar initial void

ratio (the differences were only caused by the relatively
high unloading modulus of the assembly), but different

relative void ratios re (different overconsolidation ratios

OCR). For comparison, Figure 11 also shows the re-
sults on normally consolidated samples. The asymptotic

states coincide exactly with the states reached after

normal compression, demonstrating that the isochoric
asymptotic state is independent of the initial stresses

and void ratios. It is also interesting to point out that

the maximum value of ψσ reached in the tests increases
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Fig. 11 ψǫ̇ = 90◦ tests on overconsolidated samples. (a) sketch of the stress paths expected from the theory, (b,c,d) results
of DEM simulations. (b) ψσ vs. mean stress diagram, (c) normal compression lines in the ln(1 + e) vs. log p plane, (d) ψσ vs.
ln(1 + e) diagram.

with increasing overconsolidation ratio. In other words,
the peak friction angle increases with OCR, while the

critical state friction angle remains unchanged. This is

consistent with predictions using constitutive models
based on critical state soil mechanics.

In the next set of simulations, we consider a shear

test in which the stress path (rather than the strain
path) direction is controlled. Namely, experiments with

a constant σr (denoted as drained triaxial tests in soil

mechanics terminology) have been simulated. The same
stretching rate D11 as in the ψǫ̇ = 90◦ tests was im-

posed, and D22 = D33 were controlled in such a way

that σr remained constant. After sufficiently long shear-
ing, the specimens reached a state with constant σ and

constant e, therefore with constant ψσ and with ψǫ̇ =

90◦ (see Figure 12). Tests on both normally consoli-

dated and overconsolidated samples were considered.
The asymptotic states reached by the NC and OC sam-

ples coincided for the given σr (Figure 12). They, how-

ever, dependended on the radial stress. The results are

compared with results of ψǫ̇ = 90◦ in Figure 13. The
final states are close to the results of the tests with

the ψǫ̇ = 90◦ strain path, but a slight deviation was

observed. Note that the stress path at low stress obliq-
uities deviated from the ideal constant σr path, caused

by an imperfection in the σr control in the software. In

the larger strain range and at asymptotic states, how-
ever, the results were not affected.

The next series of numerical experiments involves
loading along compression proportional paths with 0◦ <

ψǫ̇ < 90◦ (Figure 14). The test results for the given di-

rection ψǫ̇ converge towards a unique asymptotic state.
Similarly to the isochoric asymptotic state, ψσ is not

a constant depending primarily on ψǫ̇, but in addition

it depends on the current mean stress level. In agree-

ment with the framework from Section 2, increasing ψǫ̇

leads to a continuous increase of asymptotic ψσ (for

a given mean stress). In the volumetric space (Figure

14c), increasing ψǫ̇ leads to a continuous increase of the
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Fig. 12 Constant σr tests on normally consolidated and
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(b) ψǫ̇ vs. ǫs graph.

asymptotic OCR. The asymptotic value of OCR for the

given ψǫ̇ depends on the void ratio e.

4.2 Extension asymptotic states

To track the extension asymptotic states, the same pro-

cedure adopted in the case of compression states is used

with ψǫ̇ > 90◦. The results are shown in Figure 15. The

curves in Figure 15c form clearly defined normal ex-
tension lines; an increase in ψǫ̇ yields an increase in

the OCR (for a given e), consistent with the frame-

work outlined in Section 2. The asymptotic ψσ for the
given void ratio e increases with ψǫ̇ for lower void ratios

only. At higher void ratios, the asymptotic ψσ appears

to be independent of ψǫ̇ in the ψǫ̇ > 90◦ range. The
maximum angle of ψǫ̇, for which the asymptotic states

could reasonably be studied, was ψǫ̇ = 110◦. For higher

angles, asymptotic state would have been reached at

extremely low stresses (below 0.5 kPa), where the re-
sults were scattered and unreliable. We thus could not

confirm the existence of the limit state denoted as ±d
in Figure 4a.

4.3 Summary of the simulation results

Figure 16 attempts to summarise the asymptotic states
obtained in the described discrete element simulations.

While plotting Figure 16 it was neccesary to descide

whether the asymptotic state had already been reached.
This has been done in an ad-hoc way. Experiments

with ψǫ̇ close to 90◦ do not show any significant void

ratio change during shearing; the final states reached

in the experiments were thus considered to represent
the asymptotic states. The relevance of this assump-

tion is clear from Figure 12; the tests with ψǫ̇ < 80◦

and ψǫ̇ > 100◦ show a significant change in the void
ratio and mean stress during compression (respective

extension) along the asymptotic states. The final states

reached in these experiments are thus insufficient to
track the overall dependency of the asymptotic stress

ratio on the mean stress (on void ratio). In these cases,

portions of the test paths from Figs. 14 and Figs. 15,

which were reached by a number of tests with differ-
ent consolidation stresses, were plotted in Figure 16.

Since the same state was reached by different tests,

these states are considered to properly represent the
asymptotic response.

Results from Figure 16 allowed us to plot the shapes
of the ASBS cross-sections for constant void ratio, which

are shown in Figure 17 in the plane of q vs. p normalised

by the Hvorslev stress p∗e. Our results imply that the
shape of the constant void ratio cross-section through

the ASBS depends on the value of the void ratio. The

shape of the surface is close to the shape predicted by
the hypoplastic models [39]. However, in the constitu-

tive models, critical state conditions (ψǫ̇ = 90◦) are

typically located in the surface apex; in the present nu-

merical experiments, they are located far to the left of
it.

Figure 18 shows the normalised asymptotic state

boundary surface at the void ratio ln(1+e) = 0.58, plot-

ted together with results of constant volume (ψǫ̇ = 90◦)

tests at different overconsolidation ratios. Namely, the
results of normally consolidated test to p = 500 kPa

and overconsolidated test unloaded to 1 kPa are plot-

ted. Specimens in these two experiments had ln(1 + e)
very close to 0.58 (see Figure 11c). Figure 18a shows

that both the stress paths are bound by the ASBS, indi-

cating that the ASBS may well be considered as an ap-
proximation of the state boundary surface. Figure 18b,

however, demonstrates that the ψǫ̇ = 90◦ path does

not follow the ASBSs in the course of loading. This is

consistent with predictions of hypoplasticity [39,41,42],
but not with predictions of elasto-plastic models based

on critical state soil mechanics [52]. The elasto-plastic

models imply that in normally consolidated conditions
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Fig. 13 Constant σr tests on normally consolidated and overconsolidated samples. (a) sketch of the stress paths expected
from the theory, (b,c,d) results of DEM simulations. (b) ψσ vs. mean stress diagram, (c) normal compression lines in the
ln(1 + e) vs. log p plane, (d) ψσ vs. ln(1 + e) diagram.

the isochoric stress path follows the state boundary sur-
face up to the asymptotic state.

In drained triaxial tests (constant σr), the stress

path direction is fixed, whereas the direction of ψǫ̇ varies.

In Figure 19, stress and void ratio states with specific ψǫ̇

were extracted along constant σr test paths and com-
pared with the asymptotic behaviour obtained in con-

stant ψǫ̇ experiments. In general, reasonable agreement

between the two data sets is obtained for the higher void
ratios. In the lower void ratio range, more significant

deviations occur, particularly in the range of lower ψσ

values. The deviations may, however, be caused by non-
negligible particle overlaps occuring at high stresses

(Figure 8). Agreement between the two data sets would

imply that at the ASBS the strain rate direction is inde-

pendent of the stress rate direction. This assumption is
implicit in elasto-plastic constitutive models. This was

investigated using the DEM simulations by Tamagnini

et al. [59], who did not confirm it.

It is particularly interesting to concentrate on the
ψǫ̇ = 95◦ and ψǫ̇ = 100◦ state occurring near the

peak of the constant σr test on heavily overconsoli-

dated soil (unloaded from 1000 kPa to 2 kPa and 5
kPa), shown in Figure 19. This state plots close to the

extension asymptotic state obtained by ψǫ̇ = 95◦ and

ψǫ̇ = 100◦ stretching, respectively, thus supporting the
structure of the critical state models, which consider

that the peak states in drained triaxial test and exten-

sion asymptotic states coincide.

5 Discussion of the influence of the model

characteristics

5.1 Inter-particle contact parameters

First, it has been verified that the actual contact param-
eter values do not qualitatively influence the results of

the simulations. Special attention has been given to the

influence of the coefficient of friction; Figure 20 shows
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Fig. 14 Compression asymptotic states with 0◦ ≤ ψǫ̇ ≤ 90◦. (a) sketch of the stress paths expected from the theory, (b,c,d)
results of DEM simulations. (b) ψσ vs. mean stress diagram, (c) normal compression lines in the ln(1 + e) vs. log p plane, (d)
ψσ vs. ln(1 + e) diagram.

the response of the ψǫ̇ = 0◦ test (a) and ψǫ̇ = 90◦ test
(b). Qualitatively similar results to those with frictional

contact were obtained even for the case of ϕ = 0; the

observed asymptotic behaviour can thus be attributed
to both the structure of the granular material and to

the inter-particle friction. Even a soil with ϕ = 0 has

a certain frictional resistance, which further increases

with an increase in the contact friction angle (Figure
20b).

5.2 Integration step size

One of the possible approaches to estimate critical time-

step size ensuring stable numerical integration is based
on the characteristic duration of contact (response time)

tc [49,62,35,34,14,47]. For undamped oscilator, it reads

tc =
π

ω
(3)

where ω =
√

kn/m12 is the eigenfrequency of the con-

tact, kn is contact normal stiffness andm12 = m1m2/(m1+

m2) is the reduced mass of the two particles in con-
tact. In the present case, tc for the contact of smallest

particles is tc(min) = 1.5 ∗ 10−6s, and tc for the con-

tact of largest particles is tc(max) = 7.4 ∗ 10−6s. The
time-step size adopted in the present simulations was

∆t = 1.2 ∗ 10−7 s, which means ∆t = tc(min)/12.4 =

tc(max)/61.9. To verify the time-step size was suffi-

ciently small, the simulations were repeated with five-
times smaller ∆t; the results were identical.

5.3 Stretching rate

The results of discrete element simulations are in the

dynamic regime influenced by the rate of shearing. Sim-

ulations of the simple plane shear tests by different au-
thors [10,26,18,50] revealed that the dependency of the

global coefficient of friction µ∗ on shear rate can be

evaluated by means of a non-dimmensional variable I,
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Fig. 15 Extension asymptotic states with ψǫ̇ ≥ 90◦. (a) sketch of the stress paths expected from the theory, (b,c,d) results
of DEM simulations. (b) ψσ vs. mean stress diagram, (c) normal compression lines in the ln(1 + e) vs. log p plane, (d) ψσ vs.
ln(1 + e) diagram.

called inertial number [10,18]. It is defined as

I =
γ̇d

√

P/ρs
(4)

where γ̇ is the shear rate, d is particle diameter and P is
normal stress. For low values of the inertial number (ap-

proximately I < 10−2), the simulations are quasi-static

and the observed friction coefficient does not depend on

the shear rate; for larger values of I, however, the global
coeficient of friction µ∗ increases with increasing I [10,

26,18,50]. This is demonstrated in Fig. 21 by Cruz et

al. [10].

Generalisation of the inertial number for general
loading has been proposed by Jop et al. [29]

I = ‖D‖d
√

2ρs
p

(5)

where p is mean stress. Figure 22 shows the values of

I calculated for the smallest (d = 0.2 mm) and largest

(d = 1 mm) particles within the system simulated in

this paper. Because the simulations are performed at a
constant stretching rate ‖D‖, the inertial number de-

pends on the stress level and increases with decreasing

mean stress. In the lower stress range, the value of I
is well above the limitting value I = 10−2. The depen-

dency of I on mean stress is likely the cause of the ob-

served dependency of the asymptotic ψσ on mean stress
level. Detailed investigation of this issue is outside the

scope of the present paper and will be addressed in the

future work.

6 Conclusions

In the paper, we investigated the existence of asymp-

totic states of granular assemblies and their characteris-

tics. The concept was first introduced; asymptotic stress

ratio, reached after sufficiently long stretching with a
constant strain rate direction, is considered in soil me-

chanics to be a constant. We further introduced exten-

sion asymptotic states, and the notion of normal exten-
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Fig. 16 Asymptotic states of an assembly of spherical parti-
cles, summary of the present DEM simulations. (a) ψσ vs.
mean stress diagram, (b) normal compression lines in the
ln(1 + e) vs. log p plane, (c) ψσ vs. ln(1 + e) diagram.

sion lines. It was pointed out that the asymptotic states
are inherent in the critical state soil mechanics based

constitutive models, although the existence of extension

states has been investigated in detail in the past. We
pointed out that many authors believe that the asymp-

totic behaviour is a consequence of grain crushing.

An extensive DEM study was undertaken. Although

the particles were elastic (non-crushable), the asymp-

totic behaviour was clearly observed. Asymptotic be-

haviour thus appeared to be an inherent property of
the granular assembly, caused primarily by particle re-

arrangement. The simulations indicated the existence of

extension asymptotic states and normal extension lines.
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Fig. 18 Normalised cross-section through the ASBS at ln(1+
e) = 0.58 plotted together with ψǫ̇ = 90◦ test results at the
same void ratio and two overconsolidation ratios. (a) loga-
rithmic scale, (b) linear scale.

We could not, however, investigate the behaviour up to

limiting values of ψǫ̇(±d); before reaching the asymp-

totic state, extremely low values of mean stresses were
attained and then the results were scattered and unreli-

able. The asymptotic states were further compared with

states along constant σr (drained) test paths. It was ob-

served that the peak state in the drained test coincided
with the extension asymptotic state. More generally,

we could confirm the primary property of the critical

state models, which assumes coincidence of the state
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Fig. 19 Asymptotic state behaviour compared with strain
rate directions in constant σr tests (labels for asymptotic
states in Figure 16).

boundary and asymptotic state boundary surfaces. The
asymptotic value of ψσ for the given ψǫ̇ was not con-

stant, but depended on the mean stress. This fact was

argued to be caused by the rate effects expressed in
terms of the inertial number I.
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Fig. 21 Dependency of the global friction coefficient µ∗ on
the inertial number I for various values of restitution coeffi-
cients and inter-particle friction coefficients (data and figure
from da Cruz et al. [10]).
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62(6), 549–553 (2012)
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