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Summary. A rearrangement of the hypoplastic constitutive equation is proposed
that enables the incorporation of an asymptotic state boundary surface of an arbi-
trary pre-defined shape into the model, with any corresponding asymptotic strain
rate direction. This opens the way for further development of hypoplastic models.
Predictions of a new clay hypoplastic model based on the propsoed approach are
shown for demonstration.
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1 Introduction

Over the past two decades, hypoplasticity has proven to be a powerful approach
to predict the nonlinear behaviour of soils. Early hypoplastic models were devel-
oper from sound physical assumptions by means of trial-and-error procedures (see
Kolymbas [6]). These models represented the soil behaviourreasonably well, but
their parameters did not have any clear physical meaning. Throughout the devel-
opment of hypoplasticity, several milestones can be identified, and these are often
related to predictions of asymptotic states (see Gudehus and Mǎśın [3], Maš́ın [9]).
Following the earlier work by Gudehus [1] and Niemunis [13],Maš́ın and Herle
[12] analysed asymptotic response of the clay hypoplastic model from Mǎśın [8].
They found that the predicted asymptotic states depended onthe material parame-
ters, while only isotropic and critical states were pre-defined. The complete shape
of the asymptotic state boundary surface (ASBS) thus could not be prescribeda pri-
ori, as is normal in elasto-plastic models. This property of hypoplasticity has been
regarded as its serious limitation.

A procedure for explicit incorporation of any pre-defined asymptotic states into
hypoplasticity has recently been developed by Maš́ın [11], and adopted in a devel-
opment of a particular clay hypoplastic model in Maš́ın [10]. Primary outcomes of
this research are presented in this contribution.
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2 Explicit incorporation of asymptotic states into hypoplasticity

A procedure for explicit incorporation of the asymptotic states into hypoplasticity
has been proposed by Maš́ın [11], and we will adopt this approach herein. A general
formulation of the hypoplastic model may be written as [1]

T̊ = fs (L : D+ fdN‖D‖) (1)

whereT̊ andD represent the objective (Zaremba-Jaumann) stress rate andthe Euler
stretching tensor respectively,L andN are fourth- and second-order constitutive
tensors,fs is the factor controlling the influence of mean stress (barotropy factor)
and fd is the factor controlling the influence of relative density (pyknotropy factor).

To evaluate the model response at the ASBS, we will interpretit in the stress
space normalised by the size of the constant void ratio cross-section through the
ASBS. It is given by the Hvorslev equivalent pressurepe, defined as a mean stress
at the isotropic normal compression line at the current voidratio e. The normalised
stress thus readsTn = T/pe and it follows [10] that

T̊n =
T̊
pe

−
T
p2

e
ṗe (2)

In the following, we assume normal compression lines linearin the ln(1+ e) vs.
ln p/pr plane (pr is the reference stress of 1 kPa). The isotropic normal compression
line can be written as

ln(1+ e) = N −λ ∗ ln(pe/pr) (3)

whereN andλ ∗ are model parameters. It follows that

pe = pr exp

[

N − ln(1+ e)
λ ∗

]

(4)

and thus

ṗe =−
pe

λ ∗

(

ė
1+ e

)

=−
pe

λ ∗
trD (5)

Combination of (5), (2) and (1) implies that

T̊n =
fs

pe
(L : D+ fdN‖D‖)+

T
peλ ∗

trD (6)

During asymptotic stretching the stress state remains fixedin the Tn space [12],
provided the constant void ratio cross-sections through the ASBS differ only in size
and not in shape. This condition impliesT̊n = 0. It then follows from (6) that

−
T
λ ∗

trDA = fs
(

L : DA + f A
d N‖DA‖

)

(7)
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where f A
d is the value offd at the ASBS andDA is the asymptotic strain rate cor-

responding to the given stress state. Eq. (7) can be manipulated in the following
way:

−

(

T
λ ∗

trDA + fsL : DA
)

= fs f A
d N‖DA‖ (8)

−A : DA = fs f A
d N‖DA‖ (9)

−A : d = fs f A
d N (10)

where

A = fsL +
T
λ ∗

⊗1 (11)

d =
DA

‖DA‖
(12)

Eq. (10) implies that

N =−
A : d

fs f A
d

(13)

Combining (13) with (1) yields an alternative expression ofthe hypoplastic model

T̊ = fsL : D−
fd

f A
d

A : d‖D‖ (14)

An arbitrary shape of the ASBS can be incorporated into hypoplasticity with the aid
of Eq. (14), by appropriate specification of the dependence of f A

d on the void ratio
and stress ratio. The corresponding asymptotic direction of the strain rate is then
prescribed byd.

3 Proposed asymptotic states

A particular shape of the ASBS and the corresponding strain rate direction has been
proposed by Mǎśın [10]. Due to the limitted space, we do not present herein their
full mathematical formulations, but instead we describe their main characteristics.
The ASBS is characterised by

• Deviatoric (constant mean stress) cross-sections throughthe ASBS, which cor-
respond to the failure criterion by Matsuoka and Nakai [7].

• Mobilised friction angleϕm is equal to the critical state friction angleϕc at
pe/p = 2 (wherepe is the Hvorslev equivalent pressure). This also implies posi-
tion of the critical state line in the lnp vs. ln(1+ e) plane.
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• ϕm for pe/p → ∞ limit to ϕm → 90◦. This ensures that the ASBS does not span
into the tensile stress region.

• The surface isC1 continuous everywhere except theT = 0 state.

The proposed shape of the ASBS, whose mathematical formulation is presented
in Ref. [10], is in Fig. 1(a) plotted for the axisymmetric stress state in the normalised
stress planep/pe vs. q/pe for different critical state friction angles. Its shape is
compared with the shape of the ASBS by the Modified Cam-clay model. The ASBS
has the desired properties. In particular, unlike the ASBS of the Modified Cam-
clay model, it is bound by theϕm = 90◦ state, which means it is bound within the
compression stress range. Different 3D views of the ASBS in the principal stress
space are show in Fig. 2.
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Fig. 1 Asymptotic state boundary surfaces for different critical statefriction anglesϕc. Proposed
model (a) and a Modified Cam-clay model (b).
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Fig. 2 Principal stress space 3D plots of the ASBS of the proposed model for ϕc = 25◦.

The proposed asymptotic strain rate directiond has the following properties:

• It predicts zero volumetric strains (trd = 0) for ϕm = ϕc.
• It predicts zero shear strains (devd = 0) for ϕm = 0◦.
• TheK0 state closely agrees with the Jáky [5] formula
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K0 = 1−sinϕc (15)

• The±d states, introduced by Gudehus [2] (Chapters 2 and 3), are properly con-
sidered in both the triaxial compression and extension regime. For details, see
[2, 3, 9].

• dA has radial deviatoric direction.

Figure 3 showsK0 values predicted by the proposed [10], original [8] and Mod-
ified Cam-clay models for different values ofϕc. The proposed model predictsK0

practically coinciding with the J́aky [5] equation (15). Both the original and Cam-
clay models overpredictK0.
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Fig. 3 K0 values for differentϕc predicted by the proposed, original and Modified Cam-clay
models.

4 Model formulation

General rate formulation of the model is given by Eq. (14). The tensorL is repre-
sented by isotropic elasticity: that is

L = I +
ν

1−2ν
1⊗1 (16)

where the parameterν controls the proportion of bulk and shear stiffness. Effec-
tively, it regulates the shear stiffness, since the bulk stiffness in the model is con-
trolled by the parametersλ ∗ and κ∗ (as shown later). The asymptotic strain rate
directiond has been described in Sec. 3. The following expression for the factor fd ,
which governs the non-linear behaviour inside the state boundary surface, is chosen:

fd =

(

2p
pe

)α
(17)
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whereα = 2 is controlling the influence of OCR on non-linear response inside the
ASBS. The value off A

d and the asymptotic strain rate directiond is calculated to
follow the proposed asymptotic state formulation, described in Sec. 3.

The last component of the model to be defined is the factorfs. It is specified
following Ref. [11] to ensure that the slope of the isotropicunloading line in the
ln(1+e)–lnp plane, for unloading starting from the isotropic normally consolidated
state, is given byκ∗. Algebraic manipulations with the above tensorial equations
reveal that

fs =
3p
2

(

1
λ ∗

+
1

κ∗

)

1−2ν
1+ν

(18)

The model requires five parameters, with the same physical interpretation as the
parameters of the Modified Cam-clay model:ϕc, λ ∗, κ∗, N andν . ϕc is the critical
state friction angle;λ ∗ is the slope of the isotropic normal compression line in the
plane ln(1+ e) vs. lnp; κ∗ controls slope of unloading line in the same plane;N is
the value of ln(1+ e) at the isotropic normal compression line forp = pr = 1 kPa;
and finally the parameterν controls the shear stiffness.

5 Model predictions
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Fig. 4 The shape of ASBS of the original and proposed models, plotted together with response
envelopes at the isotropic (i) and critical (±c) asymptotic states and in two overconsolidated (oc)
states.

Figure 4 shows the shape of the ASBS, together with response envelopes [3]
for different states of stress and overconsolidation. It shows the ASBS predicted by
the proposed and original clay hypoplastic models. The original model produces
response envelopes which rotate with increasing stress deviator, whereas the pro-
posed model adopts isotropic elasticity, which means that the shape of the response
envelopes is not affected by the stress state. This is causedby the different formu-
lation of the tensorL in the proposed and original models. It influences the model
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predictions inside the ASBS, and causes the proposed model to better reproduce the
experimental data.

Figure 5 shows predictions of the undrained triaxial tests on the clay from Dort-
mund, Germany. The experimental data and predictions by theoriginal model have
been presented by Herle et al. [4]. The predicted stress paths differ in the way the
asymptotic state is approached, but both predictions represent the experimental data
reasonably well. More significant difference is clear from the predicted shear strain
vs. deviatoric stress curves. The proposed model predicts accurately the decrease of
the tangent shear modulus with shear strain. On the other hand, the original model
represents the stress-strain curve relatively poorly, as it underestimates the original
stiffness and also the rate of the stiffness degradation.
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Fig. 5 Undrained triaxial tests on overconsolidated Dortmund clay and their representation by the
proposed and original models. Experimental data from [4].

6 Conclusions

A new hypoplastic model for fine-grained soils has been described. The model is
based on an approach which enables us to specify explicitly the asymptotic state
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boundary surface and corresponding asymptotic strain ratedirection. The model
eliminates several shortcomings of the original clay hypoplastic model from [8]
and improves its predictions, while using equivalent material parameters. The main
advantage of the new model is in the independent formulationof the individual
model components. The new model is thus more suitable to forma basis for further
developments and enhancements.
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[10] Maš́ın, D.: Clay hypoplasticity with explicitly defined asymptotic states. Acta
Geotechnica (submitted) (2012)
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