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Summary. A rearrangement of the hypoplastic constitutive equat®prbposed

that enables the incorporation of an asymptotic state bemynsurface of an arbi-
trary pre-defined shape into the model, with any correspandsymptotic strain

rate direction. This opens the way for further developméritypoplastic models.

Predictions of a new clay hypoplastic model based on thesoegh approach are
shown for demonstration.
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1 Introduction

Over the past two decades, hypoplasticity has proven to benanful approach
to predict the nonlinear behaviour of soils. Early hypoptamodels were devel-
oper from sound physical assumptions by means of trialeam- procedures (see
Kolymbas [6]). These models represented the soil behavieasonably well, but
their parameters did not have any clear physical meaningufiinout the devel-
opment of hypoplasticity, several milestones can be ifledtiand these are often
related to predictions of asymptotic states (see Gudehdid/agin [3], Masin [9]).
Following the earlier work by Gudehus [1] and Niemunis [18[aSin and Herle
[12] analysed asymptotic response of the clay hypoplastidehfrom Mdin [8].
They found that the predicted asymptotic states dependéldeomaterial parame-
ters, while only isotropic and critical states were preqtedi The complete shape
of the asymptotic state boundary surface (ASBS) thus coatlthe prescribed pri-
ori, as is normal in elasto-plastic models. This property ofdpjasticity has been
regarded as its serious limitation.

A procedure for explicit incorporation of any pre-definegraptotic states into
hypoplasticity has recently been developed bysiM411], and adopted in a devel-
opment of a particular clay hypoplastic model in $a[10]. Primary outcomes of
this research are presented in this contribution.
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2 Explicit incorporation of asymptotic states into hypoplagicity

A procedure for explicit incorporation of the asymptotiatsts into hypoplasticity
has been proposed by Bla [11], and we will adopt this approach herein. A general
formulation of the hypoplastic model may be written as [1]

T = fs(Z: D+ fN|D|) (1)

whereT andD represent the objective (Zaremba-Jaumann) stress ratb@ialler
stretching tensor respectivelyy andN are fourth- and second-order constitutive
tensors,fs is the factor controlling the influence of mean stress (lvapyt factor)
andfy is the factor controlling the influence of relative densjtyKnotropy factor).

To evaluate the model response at the ASBS, we will interipietthe stress
space normalised by the size of the constant void ratio €yesson through the
ASBS. It is given by the Hvorslev equivalent presspggedefined as a mean stress
at the isotropic normal compression line at the current vaiib e. The normalised
stress thus reads, = T/pe and it follows [10] that

Foe - L pe @
pe e

In the following, we assume normal compression lines lineahe In(1+e) vs.
Inp/pr plane @ is the reference stress of 1 kPa). The isotropic normal cessmn
line can be written as

In(1+e)=N—-A"In(pe/pr) 3)
whereN andA* are model parameters. It follows that
N—In(1+e
Pe = Pr €Xp {/\(*)} (4)
and thus _
s _Pe( & \__Pe
Pe= "%+ <1+e) A= 1P ®)
Combination of (5), (2) and (1) implies that
T —E(.,sﬂ-DJrf N|D||) + LI (6)
" Pe . d PeA *

During asymptotic stretching the stress state remains fixetle T,, space [12],
provided the constant void ratio cross-sections througtABBS differ only in size
and not in shape. This condition impligg = 0. It then follows from (6) that

T
— 57 DA = fs (£ : DA+ £EN|IDA)) (7)
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where fé\ is the value offq at the ASBS and” is the asymptotic strain rate cor-
responding to the given stress state. Eqg. (7) can be matepluia the following
way:

— (;trDAJr fsZ DA> = fsfAN||DA| (8)
—of DA = fTIN| DA 9)
—o/ :d = fsfiN (10)
where
-

o =1L+ el (11)

DA
d= —— (12)

IDA|

Eqg. (10) implies that

o/ . d

N=-—2f
fofA

(13)

Combining (13) with (1) yields an alternative expressiothaf hypoplastic model

o f
T:fsf:fo—dAd:dHDH (14)
d
An arbitrary shape of the ASBS can be incorporated into higstigity with the aid
of Eq. (14), by appropriate specification of the dependerﬁc%“cn)n the void ratio
and stress ratio. The corresponding asymptotic directfahe strain rate is then
prescribed by.

3 Proposed asymptotic states

A particular shape of the ASBS and the corresponding stededirection has been
proposed by M&n [10]. Due to the limitted space, we do not present heregir th
full mathematical formulations, but instead we describabrtimain characteristics.
The ASBS is characterised by

e Deviatoric (constant mean stress) cross-sections thrth@ASBS, which cor-
respond to the failure criterion by Matsuoka and Nakai [7].

e Mobilised friction angle¢y, is equal to the critical state friction angll, at
pe/p = 2 (wherepg is the Hvorslev equivalent pressure). This also implies-pos
tion of the critical state line in the Ipvs. In(1+e) plane.
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e ¢y for pe/p— o limitto ¢y, — 90°. This ensures that the ASBS does not span
into the tensile stress region.
e The surface i€! continuous everywhere except the= 0 state.

The proposed shape of the ASBS, whose mathematical forimniiatpresented
in Ref. [10], isin Fig. 1(a) plotted for the axisymmetricests state in the normalised
stress plangy/pe Vs. g/ pe for different critical state friction angles. Its shape is
compared with the shape of the ASBS by the Modified Cam-clagehd he ASBS
has the desired properties. In particular, unlike the ASB&e Modified Cam-
clay model, it is bound by the,, = 90° state, which means it is bound within the
compression stress range. Different 3D views of the ASB$énprincipal stress
space are show in Fig. 2.
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Fig. 1 Asymptotic state boundary surfaces for different critical statéion anglesg.. Proposed
model (a) and a Modified Cam-clay model (b).
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Fig. 2 Principal stress space 3D plots of the ASBS of the proposed madgf fe 25°.

The proposed asymptotic strain rate directibimas the following properties:

e |t predicts zero volumetric strains ¢tr= 0) for ¢m = Pc.
e It predicts zero shear strains (d&w 0) for ¢, = 0°.
e TheKy state closely agrees with thaky [5] formula
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Ko =1-sing. (15)

e The=+d states, introduced by Gudehus [2] (Chapters 2 and 3), apegyocon-
sidered in both the triaxial compression and extensionmegior details, see
[2,3, 9]

o d” has radial deviatoric direction.

Figure 3 show¥g values predicted by the proposed [10], original [8] and Mod-
ified Cam-clay models for different values ¢§. The proposed model predidty
practically coinciding with theaky [5] equation (15). Both the original and Cam-
clay models overpredidfo.
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Fig. 3 Kp values for differentp. predicted by the proposed, original and Modified Cam-clay
models.

4 Model formulation

General rate formulation of the model is given by Eq. (14)e TénsoL? is repre-
sented by isotropic elasticity: that is

v

$:f+1_2v

121 (16)

where the parameter controls the proportion of bulk and shear stiffness. Effec-
tively, it regulates the shear stiffness, since the bulffingtss in the model is con-
trolled by the parameterd* and k* (as shown later). The asymptotic strain rate
directiond has been described in Sec. 3. The following expression &featttor fy,
which governs the non-linear behaviour inside the statetary surface, is chosen:
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wherea = 2 is controlling the influence of OCR on non-linear respomsédie the
ASBS. The value offé* and the asymptotic strain rate directidris calculated to
follow the proposed asymptotic state formulation, desatim Sec. 3.

The last component of the model to be defined is the faffolt is specified
following Ref. [11] to ensure that the slope of the isotropidoading line in the
In(1+e)—Inp plane, for unloading starting from the isotropic normalysolidated
state, is given by*. Algebraic manipulations with the above tensorial equeio

reveal that 3 1 1N 12
—2v
fo— 2P <+ ) (18)

2 \A* k*) 14v
The model requires five parameters, with the same physitehiretation as the
parameters of the Modified Cam-clay modg}; A*, k*, N andv. ¢ is the critical
state friction angle}* is the slope of the isotropic normal compression line in the
plane I{1+e) vs. Inp; k* controls slope of unloading line in the same plaNes
the value of Irf1+ e) at the isotropic normal compression line for= pr = 1 kPa;
and finally the parameter controls the shear stiffness.

5 Model predictions
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Fig. 4 The shape of ASBS of the original and proposed models, plottegthiegwith response
envelopes at the isotropic) @nd critical ¢-c) asymptotic states and in two overconsolidated) (
states.

Figure 4 shows the shape of the ASBS, together with respamseiapes [3]
for different states of stress and overconsolidation. dixshthe ASBS predicted by
the proposed and original clay hypoplastic models. Theimagnodel produces
response envelopes which rotate with increasing stresatdewvhereas the pro-
posed model adopts isotropic elasticity, which means treshape of the response
envelopes is not affected by the stress state. This is cdysttk different formu-
lation of the tensorZ in the proposed and original models. It influences the model
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predictions inside the ASBS, and causes the proposed nwHetter reproduce the

experimental data.
Figure 5 shows predictions of the undrained triaxial testthe clay from Dort-

mund, Germany. The experimental data and predictions bgrigagal model have
been presented by Herle et al. [4]. The predicted stress fffler in the way the
asymptotic state is approached, but both predictions septe¢he experimental data
reasonably well. More significant difference is clear frdra predicted shear strain
vs. deviatoric stress curves. The proposed model predictgately the decrease of
the tangent shear modulus with shear strain. On the othet, lla@ original model
represents the stress-strain curve relatively poorlyt asderestimates the original

stiffness and also the rate of the stiffness degradation.
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Fig. 5 Undrained triaxial tests on overconsolidated Dortmund clajthair representation by the
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proposed and original models. Experimental data from [4].

6 Conclusions

A new hypoplastic model for fine-grained soils has been desdr The model is
based on an approach which enables us to specify explitidyasymptotic state
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boundary surface and corresponding asymptotic straindiagetion. The model
eliminates several shortcomings of the original clay hyasiic model from [8]
and improves its predictions, while using equivalent matgarameters. The main
advantage of the new model is in the independent formulatfotne individual
model components. The new model is thus more suitable to &doasis for further
developments and enhancements.
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