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Summary. The concept of the asymptotic behaviour of particulate materials is de-
scribed, including its enhancement considering asymptotic states in extension. A
3D discrete element model with permanent elastic sphericalparticles is set up. The
numerical sample is stretched from different initial states, and the influence of the
strain rate direction on the final state is studied. Asymptotic behaviour is clearly
observed. Existence of extension asymptotic states is demonstrated, and the notion
of normal extension line is introduced.
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1 Introduction

Asymptotic behaviour is one of the most striking features inthe behaviour of gran-
ular materials. Specific asymptotic states have been known since the early days of
soil mechanics. Casagrande [1] observed critical state behaviour of soils – a par-
ticular asymptotic state related to constant volume shearing. Schofield and Wroth
[8] combined the existence of critical states and compression asymptotic states (re-
vealed in normal compression behaviour) into a unified framework of critical state
soil mechanics. More generally, Gudehus et al. [5] understood asymptotic states to
be attractors in the behaviour of granular materials, whichare independent of the
initial state. They proposed that each direction of strain rate with a volume decrease
is uniquely linked to a particular asymptotic stress ratio and a particular path in the
mean stress vs. void ratio plane (normal compression line).More recently, Gudehus
[3] and Gudehus and Maš́ın [4] have extended the asymptotic state concept into the
volume increase (extension) regime.

In this contribution, we present a discrete element study aimed at understanding
of the asymptotic behaviour of granular materials. Only themain outcomes of an
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extensive study are presented due to limited space; more details are given in Mǎśın
[7].

2 Asymptotic state framework

Asymptotic states are defined as that states reached after a sufficiently long pro-
portional stretching, i.e. stretching with a constant direction of the strain rate. Con-
ceptual representation of asymptotic states has been proposed by Gudehus [3] and
Gudehus and Mǎśın [4]. In this work, we focus on axisymmetric stress and deforma-
tion states, where the strain rate tensor is fully characterised by axial̇εa and radial̇εr

components. Similarly, the stress tensor is given byσa (axial stress) andσr (radial
stress). The strain rate direction may be characterised by an angleψε̇ (see Figure
1a), and the stress obliquity is quantified by the angleψσ (Figure 1b).
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Fig. 1 Definition of anglesψε̇ andψσ [4]. ”i” denotes the isotropic direction, ”c” denotes the
isochoric (constant volume) direction, and ”d” denotes the theoretical limit for asymptotic state
behaviour.

According to the current understanding of the asymptotic behaviour of a granular
assembly, proportional deformation (constantψε̇ ) will ultimately lead to an asymp-
totic state characterised by a constantψσ . Each of the asymptotic states also has a
unique trace in the mean stressp vs. void ratioe plane. Asymptotic states in this
plane are traditionally denoted as normal compression lines. All normal compres-
sion lines are bound between isotropic normal compression line, attributed toψε̇(i),
and the critical state line, linked withψε̇(±c) (see Fig. 1 for definition ofi and±c
directions).

As suggested by Gudehus [3] (Chapters 2 and 3) and Gudehus andMaš́ın [4],
asymptotic states can also be reached after proportional stretching along extension
(volume increase) paths. The stretching directions that lead to extension asymptotic
states are depicted in Figure 2. Limiting values ofψε̇ and ψσ are denoted with
indices ’d’ (asymptoticσr = 0) and ’-d’ (asymptoticσa = 0) [4]. Each extension
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asymptotic state is also associated with its trace in the mean stress vs. void ratio
plane. In the following, we denote these traces asnormal extension lines (adopting
a parallel with the well-known notion of normal compressionlines).
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Fig. 2 Graphical representation of extension asymptotic states.

3 Discrete element model of the asymptotic behaviour

In order to model the granular assembly, the open-source 3D discrete element soft-
ware Yade [9] was used. This software utilises the DEM formulation given by Cun-
dall and Strack [2]. We present the results for a specimen consisting of elastic spheri-
cal particles. In order to resemble a real granular material, particles of different sizes
have been considered following the grain-size-distribution curve of a real sand. The
sample consisted of 150000 spherical particles. The periodic cell was cubic, with the
initial side length of 31 mm. The specimen in its initial state is depicted in Figure 3.

The contact properties of the spherical particles were governed by a linear elastic
perfectly plastic model without cohesion [2], which specifies the contact normal
stiffnesskn, shear stiffnessks and friction angleϕ. These parameters are calculated
from the particle propertiesE = 500 MPa,ν = 0.3 andϕ = 0.5 Rad. The prescribed
particle density wasρs = 2650 kg/m3 and acceleration due to gravity was zero. The
cell boundaries were periodic and they were subjected to a constant velocity gradient
∇v (constant value of the Euler stretching tensor D). Axisymmetric conditions were
applied, such thatD22=D33 (subscripts2 and3 represent the horizontal directions,1

the vertical direction). The angleψε̇ can then be calculated by means of Figure 1(a).
Local non-viscous damping has been used, with a damping coefficient χ = 0.5.
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Fig. 3 Periodic cell used in the simulations, consisting of 150000 spherical particles.

4 Modelling results

Figure 4 shows results on a sample loaded uniformly along thepathψε̇ = 0◦, to-
gether with the results of a test where the loading directionwas reversed several
times toψε̇ = 180◦. The uniformly loaded sample clearly defines an isotropic nor-
mal compression line, which is approximately linear in the lnp vs. ln(1+ e) plane.
The sample with the unloading-reloading cycles shows that the isotropic normal is
asymptotically approached irrespective of the initial soil density (apart from the mi-
nor ”overshooting” in the first reloading cycle, which may beattributed to inertia
effects). The normal compression behaviour is observed on an assembly of elas-
tic (non-crushable) spheres; it is thus not related to graincrushing. Instead, grain
crushing may be regarded as an eventual consequence of stress concentration dur-
ing loading along the normal compression line.
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Fig. 4 Monotonous and cyclic (unloading-reloading) isotropic testresults (ψε̇ = 0◦ in loading and
ψε̇ = 180◦ in unloading).



Discrete element investigation of the asymptotic behaviour of granular materials 5

Secondly, we study the constant volume asymptotic state (ψε̇ = 90◦). Figure 5
shows the results of constant volume experiments on normally consolidated (NC)
and overconsolidated (OC) samples. These tests are known asundrained triaxial
tests in soil mechanics terminology. The samples were first loaded along theψε̇ = 0◦

path up to the prescribed value of the mean stress. Then, the direction of loading was
changed toψε̇ = 90◦ and the NC samples were sheared until the asymptotic state
was reached. The OC samples underwentψε̇ = 180◦ unloading before shearing. Fig-
ure 5 shows results of the numerical experiments. Although the final states appear
to align along a single curve in thep vs. ψσ plane, this curve is not represented by
a constant value ofψσ . The final states in the ln(1+ e) vs. lnp plane form a clearly
defined critical state line. This line is approximately parallel to the isotropic normal
compression line, apart from the larger stresses, where theresults are influenced by
the final compressibility of the grains and consequent non-negligible overlapping of
particles. The asymptotic state is reached irrespective ofthe initial void ratio (NC
and OC samples reach the same state finally).
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Fig. 5 Results ofψε̇ = 90◦ tests on normally consolidated and overconsolidated samples.

In the next set of simulations, we consider a shear test in which the stress path
(rather than the strain path) direction is controlled. Namely, experiments with a con-
stantσr (drained triaxial tests) have been simulated. The same stretching rateD11

as in theψε̇ = 90◦ tests was imposed, andD22 = D33 were controlled in such a way
thatσr remained constant. After sufficiently long shearing, the specimens reached a
state with constantσa and constante, therefore with constantψσ and withψε̇ = 90◦

(see Figure 6). Tests on both normally consolidated and overconsolidated samples
were considered. The asymptotic states reached by the NC andOC samples coin-
cided for the givenσr (Figure 6). The asymptotic states reached in constantσr tests
coincided also with those fromψε̇ = 90◦ tests.

Apart from the asymptotic states in compression, asymptotic behaviour of sam-
ples stretched in extension (ψε̇ > 90◦) has been investigated. Figure 7 shows the
ln(1+ e) vs. lnp response of these samples. Irrespective of the initial compression
stress, all the samples reached well defined asymptotic states. These lines were pro-
posed in Sec. 2 as ”normal extension lines”. Although they have probably not been
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Fig. 6 Results of constantσr tests on normally consolidated and overconsolidated samples.

observed in experiments yet, they were theoretically predicted and in this study they
were confirmed using discrete element simulations.
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Fig. 7 Extension asymptotic states withψε̇ ≥ 90◦ plotted in the ln(1+ e) vs. logp plane, demon-
strating existence of the so-called normal extension lines.

Figure 8 attempts to summarise the asymptotic states obtained in the described
discrete element simulations for various angles ofψε̇ . Several properties of the ob-
served asymptotic states agree with the concept described in Sec. 2. There are, how-
ever, also clear deviations from this concept. As expected,increasingψε̇ leads to an
increase of the asymptotic stress ratioψσ . Contrary to the theory and experimental
observations, however, the asymptoticψσ is for the givenψε̇ not constant, but it
depends on the mean stress level (Fig. 8(a)). This dependency is likely to be caused
by rate effects, which can be expressed in terms of inertial numberI [6]; see Mǎśın
[7] for more detailed discussion. Asymptotic states were uniquely defined also in
the volumetric plane ln(1+ e) vs. lnp. They are denoted as normal compression
lines, critical state line and normal extension lines. The maximum angle ofψε̇ , for
which the asymptotic states could reasonably be studied, wasψε̇ = 110◦. For higher
angles, asymptotic state would have been reached at extremely low stresses (below
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0.5 kPa), where the results were scattered and unreliable. We thus could not confirm
the existence of the limit state denoted as±d in Figure 2(a).
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Fig. 8 Asymptotic states of an assembly of spherical particles, summary of the DEM simulations.

5 Conclusions

In the paper, we presented an investigation of the asymptotic properties of granular
assemblies. The concept was first introduced, following description of an extensive
DEM study. Although the particles were elastic (non-crushable), the asymptotic be-
haviour was clearly observed. Asymptotic behaviour thus appeared to be an inherent
property of the granular assembly, caused primarily by particle rearrangement. The
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simulations indicated the existence of extension asymptotic states and normal ex-
tension lines.
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