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1 Abstract

While the effect of spatial variability on the probability of unsatisfactory performance in geotech-

nical applications is relatively well understood, comparatively less attention has been given in the

literature to the effects of experimental (measurement scatter) and sampling (insufficient number of

samples) uncertainties. In this paper, a general approach is developed to incorporate experimental

and sampling uncertainties into probabilistic analyses based on random field methods. It is shown

that, when compared with the standard approach which attributes the measured total soil variability

to spatial variability, consideration of experimental uncertainty may significantly reduce the calcu-

lated probability of unsatisfactory performance. It is argued that this may be one of the reasons

for an overestimation of the probability of unsatisfactory performance in geotechnical probabilis-

tic simulations (another important reason is the spatial averaging of soil properties). Evaluation

of the sampling uncertainty reveals that, although a relatively large number of samples is needed

for spatial variability characterisation, a limited number of samples is sufficient to quantify the

experimental uncertainty. It is pointed out that no adjustments of the existing random field-based

software are needed to consider the additional uncertainties. To illustrate the proposed approach,

two extensive experimental data sets on sand are presented: one reflecting total variability and the

other quantifying experimental uncertainty. A hypoplastic model is calibrated against the two data

sets and adopted in random field analyses of strip footing settlement.

Keywords: probabilistic methods; random field method; experimental uncertainty; sampling un-

certainty; constitutive model; sand.

Introduction

Design parameters obtained from any geotechnical site investigation are subject to uncertainties.

These are caused, in particular, by (a) an inherent spatial variability of soil properties, (b) exper-

imental uncertainty (measurement scatter) due to limitations of the experimental techniques and

(c) sampling uncertainty (statistical uncertainty) due to the limited number of soil samples used in

the investigation (Phoon & Kulhawy (1999a), Schweiger & Peschl (2005), Christian et al. (1994)).

Other uncertainty sources, which are not within the scope of this paper, involve transformation

uncertainty (transformation of the measured value to the design value by means of a potentially in-

accurate empirical method), material model uncertainty (imperfect representation of soil behaviour

by a material model) and experimental bias (systematic measurement error due to problematic

functioning or calibration of the experimental device).

Formal treatment of the spatial variability is relatively well understood, as it has been studied
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thoroughly in the geotechnical literature. Spatial variability has been investigated experimentally

(e.g., Suchomel & Mašı́n (2011), Zhao et al. (2013), Akbas & Kulhawy (2010), Wang & Chias-

son (2006), Hicks & Onisiphorou (2005), Kim (2002), Lumb (1966), Soulié et al. (1990), Jung

et al. (2008), El-Ramly et al. (2005), El Gonnouni et al. (2005), Elkateb et al. (2003)), treated for-

mally using random-field methods (e.g., Vanmarcke (1983), Griffiths & Fenton (2004), Suchomel

& Mašı́n (2010), Suchomel & Mašı́n (2011), Nübel & Karcher (1998), Andrade et al. (2008), Cho

& Park (2010), Niemunis et al. (2005), Kim & Santamarina (2008), Hsu & Nelson (2006)) or by

using approximate probabilistic methods involving spatial averaging of soil properties (e.g., Su-

chomel & Mašı́n (2010), Suchomel & Mašı́n (2011), Brza̧kała & Puła (1996), Peschl & Schweiger

(2003), Cho (2007), El-Ramly et al. (2002)). It has been shown that the spatial correlation signif-

icantly affects the results of probabilistic analyses of various geotechnical problems (e.g., Wang

& Chiasson (2006), Hicks & Onisiphorou (2005), Nour et al. (2002), Fenton & Griffiths (2002),

Fenton & Griffiths (2005), Huber et al. (2010), Griffiths et al. (2002), Fenton & Griffiths (2003),

Hicks & Samy (2002), El-Ramly et al. (2006), Haldar & Babu (2008), Popescu et al. (1997)).

Less attention has been payed to the other uncertainty sources. An additive model separating differ-

ent uncertainties has been proposed by Phoon & Kulhawy (1999b). They considered the reduction

of spatial variability using a spatial averaging factor (Vanmarcke, 1983) and additively included

variance due to experimental uncertainty in the global parameter variance. However, this may lead

to an overestimation of the global uncertainty; this issue is discussed in detail later in this paper

and was also implied by Müller et al. (2014). A similar simplified approach has been followed

by Akbas & Kulhawy (2010) and by Al-Naqshabandy & Larsson (2013), who also included the

effects of sampling and transformation uncertainties. A general approach to uncertainty quantifi-

cation, including a proper treatment of the experimental uncertainty, was presented by Christian

et al. (1994) and Müller et al. (2014); they did not consider random field characterisation of spatial

variability, but instead adopted a simpler method based on spatial averaging. Another approach

to quantify the effect of experimental uncertainty is represented by the theory of random sets, ap-

plied to geomechanical problems by Schweiger & Peschl (2005) and Oberguggenberger & Fellin

(2008). More publications on separating different uncertainty sources can be found in the field of

hydrology (Merz & Thieken (2005), Sun et al. (2012), Booy & Lye (1989)) and other engineer-

ing disciplines (Castrup (2004), Frey (1993), Helton (1997)). From an experimental perspective,

experimental uncertainty can, in principle, be estimated by quantifying the variations in repeated

measurements of the same property on identical soil samples. As pointed out by Akbas & Kulhawy

(2010), however, very few studies of this kind can be found in the geotechnical literature. Statistical

evaluation of experiments on a relatively uniform 1m clay sample was presented by Watabe et al.

(2007). An experimental characterisation of sampling uncertainty has been presented by Bourdeau

& Amundaray (2005) and Wu et al. (2013).

In this paper, a general approach is developed to incorporate spatial variability and experimental
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and sampling uncertainties into geotechnical analyses based on the random field method. Subse-

quently, extensive experimental data sets on both the spatial variability and experimental uncer-

tainty are presented and the proposed approach is demonstrated by simulation of a typical geotech-

nical problem; the settlement of a strip footing.

Incorporation of experimental uncertainty

In this section, it is assumed that the global variability and the experimental uncertainty are known

exactly. That is, the sampling uncertainty is neglected, which will be covered later. It is assumed

that the following two measurement data sets are available:

• Measurements in the spatial grid aimed at evaluating spatial variability for random field

probabilistic analyses. These measurements contain information on the spatial variability.

Inevitably, however, the data from each spatial node are themselves subject to the experi-

mental uncertainty.

• Repeated measurements on nominally identical samples to quantify the experimental uncer-

tainty.

Let us denote the uncertain parameters as Xi (where i is the parameter number). X1, X2 . . .Xn may

represent, for example, parameters of the constitutive model (such as friction angle and cohesion),

or uncertain values of the state variables (such as the void ratio).

Calculation of spatial variability by extracting the experimental uncertainty from the

total variability

The value of the parameter Xi, which depends on spatial position xxx, can be written as

Xi(xxx) = µ[Xi](xxx) + εt[Xi](xxx) (1)

where µ[Xi](xxx) is the mean value of the parameter Xi at the given position xxx and εt[Xi] is the

stochastic component which lumps different sources of uncertainty (subscript t stands for ”total”).

In the following, the spatial variation is considered a spatially random process without any trend

in the dependency of µ[Xi] by location. That is, the mean value µ[Xi] is considered as a constant,

and the total variability component is represented by εt[Xi] with zero mean value. Thus,

Xi(xxx) = µ[Xi] + εt[Xi](xxx) (2)
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The total variability is (in this section) composed of two components: spatial variability εn (sub-

script n for ”natural”) and experimental uncertainty εe (subscript e for ”experimental”). εn depends

on the spatial location xxx, whereas the experimental uncertainty is assumed to be independend of

location. Therefore:

εt[Xi](xxx) = εn[Xi](xxx) + εe[Xi] (3)

and

Xi(xxx) = µ[Xi] + εn[Xi](xxx) + εe[Xi] (4)

As the mean value of Xi(xxx) is constant, and εn[Xi](xxx) and εe[Xi] are independent variables,

variance of Xi(xxx) is calculated as:

var[Xi(xxx)] = var[εt[Xi](xxx)] = var[εn[Xi](xxx)] + var[εe[Xi]] ∀xxx ∈ R (5)

where R is the area of interest, representing, for example, a geological layer with given parameter

statistics. For brevity, statistical variables in this section always represent parameters Xi and the

notation can be simplified as εt[Xi] = εt. Therefore:

var[εt(xxx)] = var[εn(xxx)] + var[εe] ∀xxx ∈ R (6)

which allows us to calculate the variance due to the spatial variability from the known total variance

and variance due to the experimental variability as

var[εn(xxx)] = var[εt(xxx)]− var[εe] ∀xxx ∈ R (7)

For text brevity, the spatial position identified xxx will be omitted in the following text.

Quantification of spatial correlation properties for zero experimental uncertainty

Probabilistic analyses that consider the spatial variability of material properties often make use of

so-called random field methods. These methods are based on spatial statistics of the input param-

eters, which are adopted to generate a random field. Statistical characteristics of the performance

function (model output) can then be evaluated using methods such as Monte-Carlo, which involve

a number of random field realisations.

A random field can be characterised by the statistical distribution of the input parameter and by the

dependency between measurements of the parameter at two locations on the separation distance.

This dependency may be described by a semi-variogram1 γv(τ). An empirical semi-variogram can

1To avoid confusion with the variance reduction factor γ, the semi-variogram is in this paper denoted as γv in place

of the standard notation γ.
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Figure 1: Normalised semi-variogram and correlogram for zero experimental uncertainty

(var[εe] = 0).

be constructed from measurements of the i-th parameter Xi using

γv(τ) =
1

2
E
[
(Xi(xxx1)−Xi(xxx2))

2

]
, ∀‖xxx1 − xxx2‖ = τ (8)

where τ is the spatial distance between two points and E is the expected value operator (mean).

For spatialy limited correlation, limτ→∞ γv(τ) represents the variance of the random field:

lim
τ→∞

γv(τ) = var[εt] (9)

In the geomechanical literature, it is more common to express the semi-variogram in the normalised

form using the autocorrelation coefficient ρ(τ) (in this graph it is denoted as a correlogram), which,

for zero experimental uncertainty var[εe] = 0, reads

ρ(τ) = 1− γv(τ)

var[εt]
(10)

The correlogram may be modelled in different ways; in geomechanical literature the Markov ex-

ponential model is popular (Vanmarcke (1983), Griffiths & Fenton (2004)):

ρ(τ) = exp

(−2τ

θ

)
(11)

with the parameter θ denoted as the correlation length. Both the semi-variogram (normalised by

var[εt]) and correlogram for zero experimental uncertainty var[εe] = 0 are shown in Fig. 1.

Quantification of spatial correlation properties for non-zero experimental uncertainty

Spatial correlation properties for non-zero experimental uncertainty can be expressed using a total

semi-variogram (Smith, 2014), which includes both the natural spatial variability and the experi-

mental uncertainty. Such a semi-variogram is depicted in Fig. 2, together with three characteristics

denoted in statistics as ”nugget”, ”range” and ”sill”. They are equivalent to var[εe], correlation
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Figure 2: Total semi-variogram for non-zero experimental uncertainty.
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Figure 3: (a) Normalised semi-variogram and correlogram for natural spatial variability, (b) dis-

continuous normalised semi-variogram and correlogram for experimental uncertainty.

length θ and var[εt], respectively, using the terminology adopted in this paper.

For the purpose of introducing the spatial statistical analysis into a code with non-zero element

size, however, the developments are not based on the total semi-variogram from Fig. 2. Instead,

separate variograms (or correlograms) are considered for natural variability and for experimental

uncertainty. The semi-variogram for natural variability is formally the same as the semi-variogram

introduced in the previous subsection (Fig. 1), normalised with respect to var[εn] instead of var[εt].

var[εn] is calculated using Eq. (7). This semi-variogram is shown in Fig. 3a. The semi-variogram

for the experimental uncertainty is different; since the experimental uncertainty is assumed to be

spatially independent (Eq. (3)), its semi-variogram and correlogram are discontinuous (Fig. 3b),

with perfect correlation for τ = 0 and zero correlation for τ > 0.

Spatial correlation for analysis with elements of finite size

When random field analysis is incorporated into the finite element method (or any other method

with non-zero size of calculation units, denoted as elements in finite element and difference meth-

ods), the following problem must be considered. Spatial characteristics described in the previous

sections are relevant for calculation units of infinitesimal size. For elements of finite size, the
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variability of parameters (measured by their variance) must be reduced, due to the averaging of

property values within the finite element. This spatial averaging of soil properties over the finite

element is denoted as local averaging (Vanmarcke, 1983). The variance reduction factor γ is for

zero experimental uncertainty calculated as:

var[εt]A = γ var[εt] (12)

where var[εt]A is the variance of the spatially-averaged random field which enters the random field

simulations instead of var[εt]. The variance reduction factor γ is for the correlogram described

using Eq. (11) and for a 2D square finite element calculated by integration of (11) as (Vanmarcke,

1983):

γ =
4

(αθ)4

∫ αθ

0

∫ αθ

0

exp

(
−2

θ

√
x2 + y2

)
(αθ − x)(αθ − y)dxdy (13)

where x, y are local spatial coordinates within the element frame of reference, θ is the correlation

length and α = a/θ is the element size factor, with a being the size of the square finite element.

For the random field simulations with non-zero experimental uncertainty, the separate semi-variograms

shown in Fig. 3 are used. The variance reduction factor γn for spatial variability is calculated using

Eq. (13). Spatial variability is then introduced by reducing the variance var[εn] calculated using

(7) instead of reducing var[εt] as is done in ”standard” random field simulations, which neglect the

experimental uncertainty. Thus,

var[εn]A = γn var[εn] = γn (var[εt]− var[εe]) (14)

The variance reduction factor for the experimental variability γe comes from the integration of

the discontinuous correlogram from Fig. (3b). It follows that for the non-zero element size γe

is equal to 0. That is, experimental variability enters the random field simulations only through

the quantification of var[εn] from the known var[εt] and var[εe]. Since the variance reduction

factor γn is the same in the analyses neglecting and considering the experimental uncertainty, the

incorporation of the experimental uncertainty into random field simulations requires no adjustments

of the existing software. The total parameter variance var[εt] must only be replaced by var[εn].

Implications of neglecting the experimental variability

The above analysis implies a possibly counter-intuitive effect of experimental variability. The in-

crease of experimental uncertainty for the given total variability measured in the spatial grid using

non-perfect experimental methods decreases the parameter variance that should enter random field

simulations. Consequently, it also reduces the variance of the performance function. Statistics of
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Figure 4: Sketch of the influence of experimental uncertainty on the calculated probability of

unsatisfactory performance pf (sketched for the case when the performance is unsatisfatory for

the performance function lower than the design value, applicable for example for factor of safety).

the performance function may be used to quantify the probability of unsatisfactory performance

pf (Duncan, 2000). It represents the area under the probability density function (PDF) for cal-

culated values that are lower than the limiting design value (in the case when the design value is

the minimum, for example factor of safety), or it represents the area under the PDF for calculated

values that are higher than the limiting design value (in the case when the design value is the max-

imum, for example foundation settlement or lining bending moment). The effect of experimental

variability is demonstrated in Fig. 4. It follows that for pf < 50% consideration of experimental

uncertainty decreases the probability of unsatisfactory performance. A specific example is given

later in this paper.

Experience shows that probabilistic methods in geotechnical engineering overpredict the probabil-

ity of unsatisfactory performance. For example, Griffiths & Fenton (2004) noted that, for the case

they studied, a direct conversion of the factor of safety FS = 1.47 into the probability of slope

failure without considering spatial variability yielded pf = 28 %, a remarkably high value consid-

ering that slopes with FS = 1.47 rarely fail. It is now well established that this discrepancy may

be explained by means of spatial averaging (Griffiths & Fenton, 2004). In this paper, it is argued

that overprediction of the probability of unsatisfactory performance may additionally be caused by

neglecting the experimental variability in random field simulations.

Incorporation of sampling uncertainty

At this point, let us continue our analysis by considering the sampling uncertainty, which is the

uncertainty derived from the fact that the total and experimental uncertainties have been evaluated
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using an insufficient number of samples.

Quantification of sampling uncertainty

All the directly measured statistical characteristics involved in the simulations are subject to sam-

pling uncertainty, that is µ[Xi], var[εt[Xi](xxx)] and var[εe[Xi]] (abbreviated as µ, var[εt] and

var[εe]). In this section, these quantities become random variables. For clarity, their values ob-

tained by evaluation (of a finite number) of experiments are distinguished using a circumflex accent

σ̂.

In the following, nt denotes the number of samples used in the evaluation of the spatial variabil-

ity and ne is the number of samples used in the evaluation of the experimental uncertainty. For

normally distributed parameters (Hald (1951), Booy & Lye (1989))

σs [µ̂] =
σ̂[εt]√
nt

(15)

σ2

s

[
σ̂2[εt]

]
=

2σ̂4[εt]

nt − 1
(16)

σ2

s

[
σ̂2[εe]

]
=

2σ̂4[εe]

ne − 1
(17)

where the subscript s is adopted to indicate sampling uncertainty. Note that Eqs. (15) to (17) are

approximate only, as the sampling uncertainty should be calculated from the exact values of σ[εt]

and σ[εe] (not from their experimental estimates σ̂[εt] and σ̂[εe]). Also, they are valid for non-

correlated variables only (this is satisfied for experimental uncertainty, but not for total uncertainty

with distance-dependent autocorrelation coefficient ρ).

To incorporate the sampling uncertainty into the random field simulations with a calculation unit

of finite size, the sampling standard deviation of σ̂[εn] (denoted as σs [σ̂[εn]]) must be quantified.

It follows from the rules of statistics that for two uncorrelated normally distributed variables X and

Y

var[X − Y ] = var[X] + var[Y ] (18)

Therefore, from (16) and (17):

σ2

s

[
σ̂2[εn]

]
=

2σ̂4[εt]

nt − 1
+

2σ̂4[εe]

ne − 1
(19)

At this point, the following rule of statistics is employed:

σ2[X2] = 2σ2[X]
(
σ2[X] + 2µ2[X]

)
(20)
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to quantify σs [σ̂[εn]]. A quadratic equation is obtained with two roots: one negative and one

positive. As standard deviation must be positive, the equations yield a single valid solution, which

after algebraic manipulations reads:

σs [σ̂[εn]] =

√

−σ̂2[εn] +

√
σ̂4[εn] +

σ2
s [σ̂

2[εn]]

2
(21)

where σ2
s

[
σ̂2[εn]

]
is given by (19).

Incorporation of sampling uncertainty into the random field method

The most general approach for quantifying sampling uncertainty within a random field method is

the two-dimensional Monte-Carlo simulation (Hofer et al., 2002). In this method a nested Monte-

Carlo simulation is run for each of the random field realisations, keeping the same random field

structure (the random field is defined by means of normalised random variables, which do not

change within the nested Monte-Carlo run). µ[Xi] and σ[εn[Xi]] in the nested Monte-Carlo loop

are considered as random variables with mean values µ̂[Xi] and σ̂[εn[Xi]] and standard deviations

σs [µ̂[Xi]] (Eq. (15)) and σs [σ̂[εn[Xi]]] (Eq. (21)), respectively. Formally, 2n random variables

are thus involved in the nested Monte-Carlo loop (n is the number of parameters).

The two-dimensional Monte-Carlo simulation is computationally extremely demanding. To sim-

plify it, let us formally describe the computational model as

Y = g(X1,X2, . . . ,Xn) (22)

where Y is the performance function (simulation result, such as the factor of safety). In the simpli-

fied analysis, the mean value and variance of Y due to natural variability considering the effect of

experimental uncertainty (denoted as µn[Y ] and varn[Y ]) may be found using random field analy-

sis with parameter statistics µ̂[Xi] and σ̂[εn[Xi]]. Next, a single random field realisation is selected

(preferably the one leading to Y ∼ µn[Y ]) and a single Monte-Carlo simulation is run with a fixed

random field structure that has variable µ[Xi] and σ[εn[Xi]] using their mean values µ̂[Xi] and

σ̂[εn[Xi]] and standard deviations σs [σ̂[εn[Xi]]] (Eq. (21)) and σs [µ̂[Xi]] (Eq. (15)) leading to the

performance function statistics µs[Y ] and vars[Y ]. The assumption of statistical independence of

sampling uncertainty and natural variability then yields

var[Y ] = varn[Y ] + vars[Y ] (23)

µ[Y ] = µn[Y ] (24)
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To further simplify the simulations, it is pointed out that the Monte-Carlo run for sampling uncer-

tainty does not involve variation of the random field structure. It may thus be quite reliably sub-

stituted by simpler probablisitic methods such as the first order second moment (FOSM) method

or one of the point estimate methods (Christian & Baecher (1999), Rosenblueth (1981), Zhou &

Nowak (1988)). When expressed using the FOSM method, the value of vars[Y ] reads

vars[Y ] =
1

4

nFOSM∑

j=1

[g (µ[Rj ] + σ[Rj ])− g (µ[Rj ]− σ[Rj ])]
2

(25)

where Rj formally denotes the uncertain variables (µ[Xi] and σ[εn[Xi]]). It follows that nFOSM =

2n (standard deviation and mean of each parameter Xi is involved as an uncertaint variable). The

FOSM method therefore requires 4n runs of the performance function, a comparatively lower

number than the potentially thousands of runs required by the Monte-Carlo method.

Geotechnical engineering example

In this section, an example of application of the proposed approach is given. The underlying case

has been thoroughly described in Suchomel & Mašı́n (2011). They studied the total variability

of a sandy soil using experiments on samples obtained from a regular grid in a quarry wall. The

results have been used in simulations of a strip footing settlement using a hypoplastic model. In

this paper, an additional experimental data set is presented quantifying the experimental uncertainty

and its effect is evaluated using random field simulations.

Experimental data quantifying natural variability

The soil studied comes from the upper Cretaceous basin in south Bohemia (Czech Republic). The

sediments of the basin are fluvial, characterised by a variation of gravely sands, sands and clayey

sands. As these materials can all be modelled using a single constitutive model (hypoplastic model

has been selected), where the variation in granulometry is represented by the parameter variability,

the case study is suitable for utilisation of probabilistic methods based on random fields. For

material model calibration, thirty-seven samples for testing total variability were extracted from

the quarry wall in a grid depicted in Fig. 5 (three out of forty samples shown in Fig. 5 could not

be used in the analyses due to experimental problems). It is to be pointed out that the samples

extracted from the quarry wall have been disturbed; we have thus focused on quantification of

variability due to soil composition reflected by the hypoplastic model parameters, not on possible

variability of in-situ void ratio. The testing programme consisted of the following experiments:
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1. Angle of repose test

2. Oedometric test. The oedometric specimens were prepared by air pluviation of the dry sand

without any compaction and subsequent flooding. The aim was to prepare specimens of

minimum relative density which are most suitable for asymptotic state quantification (Mašı́n,

2012).

3. Triaxial test. The triaxial specimens were prepared by a spooning of saturated samples di-

rectly into the triaxial mold of the diameter of 38 mm, using the procedure described in

Tatsuoka et al. (1979) and Wichtmann & Triantafyllidis (2012). As noted by Head (1985),

saturated spooning is preferable to placing the sample dry and subsequent flooding, as it is

difficult to ensure full saturation in the latter case. The sample has been prepared to the total

height of 78 mm in five layers, with each layer having been thoroughly densified by tamping

(Tatsuoka et al., 1979) using rod of 20 mm in diameter. As the parameters of the hypoplastic

model depend on granulometry only and not on relative density (Herle & Gudehus (1999),

Hájek et al. (2009)), the tamping energy has not been controlled precisely; instead, approxi-

mately the same tamping energy has been applied on all the samples by the experimentalist.

After the sample preparation, it has been consolidated isotropically up to the effective stress

of 200 kPa (under a backpressure of 200 kPa) and sheared drained up to failure.

Figure 6a shows summary of the all angle of repose test results, Figures 7a and 8a give a summary

of the triaxial test results and Figure 9a shows all the oedometric curves. Summary graphs are

presented only for brevity, without any indication of location of the individual samples within the

sampling grid; for detailed information, the readers are referred to Suchomel & Mašı́n (2011). Note

that the sample preparation method probably contributed to the variations in the initial void ratio;

however, it should not have a major influence on the calibration results, as the initial void ratio does

not affect substantially the hypoplastic model parameters.

Suchomel & Mašı́n (2011) used the experimental results to calibrate the hypoplastic model given

by von Wolffersdorff (1996). The model requires eight parameters: ϕc, hs, n, ec0, ed0, ei0, α and

β. A detailed description of the model parameters and their calibration procedures can be found

in von Wolffersdorff (1996) and Herle & Gudehus (1999); here we present their summary only for

brevity:

• ϕc is the critical state friction angle.

• Parameters hs, n, ec0, ed0 and ei0 define the limiting void ratio lines, prescribed by Bauer

(1996)

e = ep0 exp

[
−
(
3p

hs

)n]
(26)
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Figure 5: The wall of the sand pit indicating positions of specimens for investigation of total

variability (from Suchomel and Mašı́n 2011). Note that three samples e4, f1 and f2 could not be

tested successfully.
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Figure 6: Normalised histograms and Gaussian fits for the angle of repose test. (a) experiments on

total variability, (b) experiments on experimental uncertainty.

where p is the mean effective stress and ep0 is substituted by ed0 for the minimum void

ratio, ec0 for the critical state void ratio and ei0 for the theoretical state of minimum relative

density.

• Parameter α controls the dependency of peak friction angle on relative density (increase of

α increases the peak friction angle for the given relative density). The model automatically

predicts an increase of peak friction angle with increasing relative density.

• Parameter β controls the dependency of soil stiffness on relative density and mean effective

stress (increase of β increases stiffness for the given relative density and mean effective

stress). The model automatically predicts an increase of soil stiffness with increasing relative

density and with increasing stress.
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Figure 7: Stress-strain curves of drained triaxial tests. Experimental curves of the tests on total

variability (a) and experimental uncertainty (b); simulated curves of the tests on total variability (c)

and experimental uncertainty (d).

The parameters were calibrated as follows. ϕc was measured directly using the angle of repose

test (Figure 7a). hs, n and ec0 were calibrated using the oedometric tests, such that they can

be represented using equation (26) where ep0 ≈ ec0 was assumed. The mean effective stress

p has been calculated from the vertical stress σv using the formula by Jáky (1944) leading to

p = σv(1 − 2 sinϕc/3). ed0 and ei0 were estimated from ec0 using the empirical correlations

ed0 = 0.38ec0, ei0 = 1.2ec0 (Suchomel & Mašı́n, 2011). The parameters α and β were calibrated

using the triaxial test results. α was calibrated so that the model represented the exact peak friction

angle and β was calibrated to predict the shear stiffness at q = 0.5qmax, where qmax is the peak

deviator stress. All the parameters were calibrated using automated scripts to limit ambiguity of

calibration. Note that the oedometric experiments conducted by Suchomel & Mašı́n (2011) were

performed up to vertical stresses of 6400 kPa, whereas the new data set on experimental uncertainty

was performed up to 3200 kPa. For consistency, the model was re-calibrated (loading step 3200

kPa to 6400 kPa was not considered) and the parameters thus differ slightly from those presented

in Suchomel & Mašı́n (2011).
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Figure 8: Void ratio variation curves from drained triaxial tests. Experimental curves of the tests

on total variability (a) and experimental uncertainty (b); simulated curves of the tests on total

variability (c) and experimental uncertainty (d).

Figures 7c, 8c and 9c show the simulations of the laboratory experiments with the obtained param-

eter sets, indicating a reasonably good fit. The oedometric curves (Figure 9) have been obtained

by directly plotting Eq. (26), whereas the triaxial curves (Figure 7) have been obtained by single

element simulations of the experiments using the hypoplastic model. Histograms of the parameters

with Gaussian fits are shown in Fig. 10a (logarithms of parameter values approximated in the case

of log-normally distributed parameters); the parameters of the distributions are in Table 1. Some

parameters were more closely approximated by a log-normal distribution and some by the Gaus-

sian distribution. The more suitable distribution was selected using the Kolmogorov-Smirnov test.
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Figure 9: Oedometric test results. Experimental curves of the tests on total variability (a) and

experimental uncertainty (b); simulated curves of the tests on total variability (c) and experimental

uncertainty (d).
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Figure 10: Normalised histograms and Gaussian fits of hypoplastic model parameters. (a) total

variability, (b) experimental uncertainty.
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Table 1: Characteristic values of statistical distributions of the hypoplastic model parameters (val-

ues in italics were obtained from empirical correlations rather than direct calibration).

total experimental ratio

parameter mean st. dev. mean st. dev. var[εe]/ var[εt]

ϕc[
◦] 35.177 1.683 35.513 0.597 0.126

ln(hs/1kPa) 13.075 1.569 11.709 0.475 0.092

lnn -1.360 0.354 -0.706 0.191 0.290

ec0 0.867 0.120 0.744 0.093 0.598

ei0 1.041 0.144 0.893 0.111 0.598

ed0 0.328 0.045 0.281 0.035 0.598

lnα -2.796 0.722 -3.393 0.853 1.397

β 1.471 0.698 1.406 0.443 0.403

Suchomel & Mašı́n (2011) also evaluated the correlation length using the ϕc measurements. The

correlogram was represented by the Markov function (11) enhanced by considering different cor-

relation lengths in the horizontal (θh) and vertical (θv) directions, which led to θh = 242 m and

θv = 5.1 m. However, the estimation of horizontal correlation length was very approximate due

to insufficient data in the lateral plane (Uzielli et al. (2005), DeGroot & Baecher (1993)), and the

vertical correlation length estimation was also not reliable, as the vertical sampling distance of 3 m

was too high to reveal the vertical scale of fluctuaction. For a more accurate estimation of vertical

correlation length, additional angle of repose tests were performed using 100 samples obtained

from a 5m high profile with 0.05m vertical sampling distance, which led to a more precise estima-

tion of θv = 0.31 m. Suchomel & Mašı́n (2011) subsequently conducted a numerical parametric

study on the influence of correlation length on the simulation results.

In this work, the investigation of the correlation length effect is not a scope of the paper; instead, we

aim to demonstrate the effect of experimental and sampling uncertainties. As considering the low

correlation length of θv = 0.31 m requires very fine finite element meshes and computationally

demanding simulations, we performed the simulations using fixed values of θh = 242 m and

θv = 5.1 m, noting that for the present case study the adopted value of θv is unrealistically high.

The selection of θv would affect the standard deviations of the performance function and thus

also the calculated probability of unsatisfactory performance, but not the qualitative effect of the

experimental and sampling uncertainties on the simulation results.
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Experimental data quantifying experimental uncertainty

A new set of experiments was performed to quantify the experimental uncertainty (Mayer, 2013).

This experimental programme was identical to that used to evaluate total variability; however, soil

was obtained from a single location within the quarry wall2. The experiments were performed

on forty nominally identical samples, which were prepared from the main sample using the cone

and quartering method. The main sample of approx. 10 kg has first been mixed thoroughly. The

technique then involved pouring the sample into a cone, flattening the cone, dividing the flattened

cone into four equal divisions (quartering), removing two opposite quarters and repiling the other

two into a new cone (Schumacher et al., 1990).

The experiments were performed in the same soil mechanics laboratory using the same triaxial and

oedometric apparatus as the experiments aimed at quantification of the spatial variability. The two

experimental data sets have been performed by two different experimentalists; however, one exper-

imentalist performed all the tests within one experimental data set. The preparation procedure for

the individual samples was identical to the preparation of the samples for testing spatial variability.

Figure 6b shows results of the angle of repose tests, Figures 7b and 8b summarise the triaxial test

results and Figure 9b shows all the oedometric curves. The results show a substantial scatter, in

particular in the peak strength measured in the triaxial test and in the initial void ratio of both

the oedometric and triaxial tests. Visual comparison with the tests on total variability (Figs. 7a,

8a and 9a), however, reveals that these experimental results are even more variable. Figures 7d,

8d and 9d show simulations of the experiments using the hypoplastic model. A reasonably good

approximation is obtained, indicating that the statistics of the model parameters may be considered

as representative for the uncertainty evaluation. Histograms of the hypoplastic model parameters

with Gaussian fits are shown in Fig. 10b (log-transformed parameters were fit in the case of log-

normally distributed parameters), and the parameters of the distributions are given in Tab. 1.

Tab. 1 also gives the ratios of parameter variances of data sets on total variability and experimental

uncertainty. Lower values of this ratio (indicating relatively low experimental variability) apply

to the angle of repose (ϕc) and parameters controlling the slope of the oedometric curve (hs and

n). In contrast, higher values were obtained for the initial void ratio measurements (ec0) and for

parameters controlling the triaxial stress-strain curves α and β. In fact, var[εe]/ var[εt] for the

parameter α is higher than one, which is theoretically not possible and other effects not considered

in this paper probably play a role here (for example uncertainty in the model calibration, different

sampling location for the tests on experimental uncertainty, etc).

2Note that due to the quarry wall advance between the sample collection, the new sample could not be extracted

exactly from the section shown in Fig. 5. It was, however, ensured the new sample had a geologically equivalent

position to the samples obtained earlier.
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Description of the finite element model

The influence of the experimental and sampling uncertainties was investigated by the random field

simulation of the settlement of a strip footing. The simulated problem aimed to demonstrate the

concept and did not correspond to any real case study. The problem characteristics were taken from

Suchomel & Mašı́n (2011). Simulations were performed using a finite element package Tochnog

Professional (Rodemann, 2008). The problem geometry and the finite element mesh are shown in

Figure 11. The mesh consisted of 1920 nine-noded quadrilateral elements. The foundation was

analysed as rigid and perfectly smooth. The soil unit weight was 18.7 kN/m3. The initial earth

pressure coefficient at rest was K0 = 0.43 (calculated from the Jáky (1944) formula using an

average value of ϕc). The initial void ratio e = 0.48 was used in the simulations.

The random fields of the input variables were generated using a Cholesky decomposition of the

correlation matrix (e.g., Fenton (1997)). All the parameters have been considered as uncorrelated,

with the exception of ec0, ed0 and ei0, which were perfectly correlated (this is because ed0 and

ei0 were calculated from ec0 using an empirical relationship). Cross-correlation between the indi-

vidual parameters has been investigated, with statistically significant cross-correlation only being

observed between the parameters α and β (R2 = 0.6), α and ec0 (R2 = −0.71) and α and ϕc

(R2 = −0.51) (the cross-correlation matrix is presented in Suchomel & Mašı́n (2011)). However,

the effect of parameter correlation has not been studied within this paper and the correlations have

thus been neglected.

In the simulations, foundation displacements uy corresponding to the load of 100 kPa were eval-

uated. The probability of unsatisfactory performance was calculated with respect to foundation

settlements of 0.09 m.

55 m

25
 m

5 m foundation

Figure 11: Finite element mesh.
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The influence of experimental uncertainty on the probability of unsatisfactory per-

formance

The influence of experimental uncertainty was included using Eq. (14). The Monte-Carlo method

was used to quantify the statistics of the performance function. To ensure the accuracy of the sim-

ulations the number of realisations was always larger than 5000; this is significantly higher than

the minimum number of realisations (700) identified by Suchomel & Mašı́n (2011)). The simula-

tions were run for the total variability and experimental uncertainty obtained from the experiments.

In addition, the influence of experimental uncertainty was further studied by varying it using a

multiplier me such that

var[εn]A = γn var[εn] = γn〈var[εt]−me var[εe]〉 (27)

The value of me = 0 thus signifies a ”standard” random finite element simulation, which does not

consider the effect of experimental uncertainty. The value of me = 1 implies parameter statistics

obtained from the present experiments. 0 < me < 1 means experimental uncertainty lower than

observed in the present experiments and me > 1 means experimental uncertainty higher than

observed in the present experiments. var[εn] equal to zero was assumed for negative values of

(var[εt]−me var[εe]) (the Macaulay bracket 〈x〉 in Eq. (27) gives a positive part of x, i.e. 〈x〉 =
(x+ |x|)/2).

Fig. 12 shows the random fields of the parameters hs, n and β for one of the Monte-Carlo realisa-

tions with me = 1, which yielded uy very close to the median value of uy obtained in the complete

Monte-Carlo run. Suchomel & Mašı́n (2011) have shown, using sensitivity analysis, that hs, n and

β were the most influential parameters in these simulations.

The value of the foundation vertical displacement closely matched a log-normal distribution. An

example simulation outcome showing the log-transformed value of uy for me = 1 and its Gaussian

fit is shown in Fig. 13.

Figure 14a shows how the mean value and standard deviation of Gaussian distributions fitted to

ln(uy/1m) are dependent on me. While the experimental uncertainty has only a minor effect on

the mean value of ln(uy/1m), the standard deviation of the performance function is significantly

influenced. An increase in the experimental uncertainty (increase of me) for the given total vari-

ability decreases the standard deviation of ln(uy/1m). As explained earlier (recall Fig. 4), the

experimental uncertainty affects the probability of unsatisfactory performance. Its value for natu-

ral variability and experimental uncertainty (denoted as pn) for different values of me is depicted

in Fig. 14b. For the simulated problem, ”standard” random field simulations ignoring experimental

uncertainty (me = 0) yielded pn = 13.9% and simulations that considered experimental uncer-

tainty with the current parameter set (me = 1) yielded pn = 10.5%. Thus, with increasing me, the
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Figure 12: Random fields of natural variability (me = 1) of the most influential parameters hs, n
and β for one of the Monte-Carlo realisations. The bottom part of the mesh is not shown.
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Figure 13: Histogram and log-normal fit of uy obtained in the Monte-Carlo simulation (me = 1,

8000 realisations).

probability of unsatisfactory performance decreases to zero.

The influence of sampling uncertainty on the probability of unsatisfactory perfor-

mance

To study the influence of sampling uncertainty the FOSM method was adopted, which was first

evaluated with respect to full Monte-Carlo simulations. Figure 15 shows the results of a Monte-
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Figure 14: (a) The dependency of the mean value and standard deviation of ln(uy/1m) on me;

(b) the dependency of the probability of unsatisfactory performance due to natural variability and

experimental uncertainty pn on me.

Carlo simulation with 7000 realisations for nt = 37, ne = 40 and me = 1. The Monte-Carlo and

FOSM simulation results practically coincide.
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Figure 15: Comparison of Monte-Carlo and FOSM simulations revealing sampling uncertainty

(nt = 37, ne = 40, me = 1).

When σs[Y ] (standard deviation of the performance function due to sampling uncertainty) is cal-

culated using the FOSM method, the total variance of Y can be calculated using Eq. (23), which

can then be used in the evaluation of the probability of unsatisfactory performance due to natural

variability and experimental and sampling uncertainties, denoted as pns. In the present case of

nt = 37, ne = 40 and me = 1, pns = 11.9%. When compared with pn = 10.5%, it can be

seen that the sampling uncertainty increases the probability of unsatisfactory performance; for the

current sample size the effect is, however, not substantial.

The relatively small effect of sampling uncertainty on pns is caused by the number of samples
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nt = 37 and ne = 40, which is relatively high for standard practical projects. To understand the

influence of ne and nt, two additional sets of FOSM simulations were run. In one set, nt was kept

constant at a high value of nt = 80 and ne was varied. In the second set, ne = 80 and nt was

varied. In the simulations, the values µ̂[Xi] and σ̂[εn[Xi]] were kept constant. The results of these

simulations are shown in Figs. 16a and b. ne has a small effect on pns even at the relatively low

value of ne = 5. In contrast, the effect of nt is more substantial, influencing simulation results

significantly for nt < 40. This is because the tests on total variability are needed to specify both

the mean value and variance of a parameter, wherease the tests on experimental uncertainty define

variance only. It can be concluded that, in practical projects, an effort should be put into sampling

for total variability, while the experimental uncertainty may be quantified using a relatively low

number of samples.
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Figure 16: (a) The dependency of the standard deviation of ln(uy/1m) (sampling only σs[Y ] and

total σ[Y ] ) on the number of samples; (b) the dependency of the probability of unsatisfactory

performance pns on the number of samples.

Summary and conclusions

An approach to quantify the effects of experimental and sampling uncertainties has been developed

in this paper. The application of the proposed approach has been demonstrated by simulating the

displacement of a foundation on a spatially variable sandy soil. Two extensive data sets were

obtained by testing 37 samples revealing the effect of total variability and 40 samples revealing the

effect of experimental uncertainty. It was demonstrated that the experimental uncertainty represents

a substantial fraction of the measured total variability.

Counter-intuitively, it has been shown that an increase in experimental uncertainty for the given

total variability measured on spatially variable samples decreases the calculated probability of un-
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satisfactory performance. It has been argued that this is possibly a reason for the relatively common

overestimation of the probability of unsatisfactory performance in geotechnical engineering prob-

abilistic simulations. By evaluating the sampling uncertainty it was found that while a relatively

large number of samples (nt > 40) is needed to properly characterise the total variability, a much

smaller number of samples (ne > 5) is sufficient for the experimental uncertainty quantification.

Considering that no software adjustments are needed for the incorporation of experimental un-

certainty into existing codes based on random field methods, and that relatively little additional

experimental effort is needed for experimental uncertainty quantification, it is recommended that a

consideration of experimental uncertainty should become more common in geotechnical engineer-

ing probabilistic analyses.
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Suchomel, R. & Mašı́n, D. (2010). Comparison of different probabilistic methods for predicting

stability of a slope in spatially variable c-phi soil. Computers and Geotechnics 37, 132–140.
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Vanmarcke, E. H. (1983). Random fields: anaylisis and synthesis. M.I.T. press, Cambridge, Mass.

von Wolffersdorff, P. A. (1996). A hypoplastic relation for granular materials with a predefined

limit state surface. Mechanics of Cohesive-Frictional Materials 1, No. 3, 251–271.

Wang, Y.-J. & Chiasson, P. (2006). Stochastic stability analysis of a test excavation involving spa-

tially variable subsoil. Canadian Geotechnical Journal 43, 1074–1087.

Watabe, Y., Shiraishi, Y., Murakami, T. & Tanaka, H. (2007). Variability of physical and con-

solidation test results for relatively uniform clay samples retreived from Osaka bay. Soils and

Foundations 47, No. 4, 701–716.

Wichtmann, T. & Triantafyllidis, T. (2012). Behaviour of granular soils under environmentally

induced cyclic loads. In Behaviour of granular soils under environmentally induced cyclic loads,

CISM International Centre for Mechanical Sciences, Springer.

Wu, Z., Tang, H., Wang, S. & Ge, X. (2013). Influence of number of geotechnical samples on slope

reliability analysis. Chinese Journal of Rock Mechanics and Engineering 32, 2846–2854.

Zhao, H. F., Zhang, L. M., Xu, Y. & Chang, D. S. (2013). Variability of geotechnical properties of

a fresh landslide soil deposit. Engineering Geology 166, 1–10.

Zhou, J. & Nowak, A. S. (1988). Integration formulas to evaluate functions of random variables.

Structural Safety 5, 267–284.

30


