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1 Introduction

Hypoplastic constitutive models have been developed since 1980’s and since
then they have established a solid base for an alternative description of the
soil behaviour, without an explicit definition of yield and potential surfaces,
see e.g. the review by [15]. Recent hypoplastic models [3, 16] include the
concept of critical states and have been successfully used in many computa-
tions of boundary value problems within coarse-grained soils. The progress
of hypoplastic models suitable for the description of fine-grained soils has
been delayed. Rate-dependent [13, 4] and rate-independent [6, 8] hypoplastic
models for clays promise to follow the success of the development for sand.
Nevertheless, a thorough testing of various constitutive aspects is required in
order to ensure a correct performance in general conditions of BVPs.

One of the key characteristics of soil behaviour, incorporated in different
ways in the most of the currently available elasto-plastic constitutive models,
is the presence of the surface in the stress-porosity space which bounds all
accesible states (state boundary surface). Hypolastic models do not incorpo-
rate the state boundary surface explicitly in the mathematical formulation.
However, as demonstrated by [11] for a particular hypoplastic model for clay
[8], state boundary surface is predicted implicitly by the constitutive equation
as a by-product of the mathematical formulation.

As shown in [11], state boundary surface of a hypoplastic model for clays is
sufficiently accurately approximated by the so-called swept-out-memory sur-
face, a surface in the stress–porosity space which coveres asymptotic states
(limit states, attractors) achieved after sufficiently long proportional deforma-
tion paths. The purpose of this paper is to provide a mathematical derivation
for the limit states of the two particular endomorphous hypoplastic models –
a hypoplastic model for clays by Maš́ın [8], which follows from [6] and [13],
and a hypoplastic model for granular materials by von Wolffersdorff [16].
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2 Basic properties of considered constitutive models

A complete mathematical formulation of both models considered in the paper
is given in Appendices. In its most general form, mathematical formulation of
the models is given by

T̊ = h (T,D, e) (1)

where T̊ is a co-rotated (Jaumann) stress rate, T stands for the Cauchy’s stress
tensor, D is the Euler’s stretching tensor and e is void ratio. All stresses are
considered as effective in the sense of Terzaghi. According to the terminology
laid out by Kolymbas [7], models belong to the sub-class of hypoplastic models
referred to as endomorphous. In addition to the Cauchy stress T, void ratio
e is also considered as a state variable. The particular form of the isotropic
tensor-valued function h, adopted in constitutive model by [8], follows from
[3] and reads

T̊ (T,D, e) = fs (trT)
[

L(T̂) : D + fd (trT, e)N(T̂)‖D‖
]

(2)

where the operator trace is defined by trX = X : 1 with 1 being the second-
order unit tensor, T̂ is the normalised stress defined by T̂ = T/trT, ‖D‖ =√

D : D is the Euclidian norm of D and the operator arrow is defined as
~D = D/‖D‖. fs and fd are barotropy and pyknotropy factors [3, 16].

The barotropy factor fs of the hypoplastic model for clays [8] is indepen-
dent of void ratio e and is a linear function of trT. It follows that for a constant
value of the pyknotropy factor fd (i.e., for swept-out-memory conditions) the
model [8] is positively homogeneous of degree 1 with respect to stress, i.e.

γ2T̊ (T,D, e) = T̊
(

γ2T,D, e
)

(3)

The barotropy factor of the hypoplastic model for granular materials [16] is
a non-linear function of trT and void ratio. For this reason the model is not
positively homogeneous with respect to stress. However, as discussed in [14],
for a constant value of fd the model is directionally homogeneous

~̊
T (T,D, e) =

~̊
T

(

γ2T,D, e
)

(4)

which is a sufficient condition to predict asymptotic behaviour [14].

3 Proportional stress and strain paths

Behaviour along proportional stress and strain paths (with ~D and ~T being
constant) is reflected in the so-called swept-out-memory (SOM) states, see
Fig. 1. These SOM-states can also be considered as attractors of the soil
behaviour [2]. The response of a real soil, however, does not depend solely
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Fig. 1. SOM-behaviour: proportional stress paths for proportional strain paths

on the stress tensor. Void ratio must be considered as an additional state
parameter for both coarse-grained and fine-grained soils.

Except for constant volume (undrained) deformation, void ratio changes
along proportional strain paths. In case of hypoplastic models for pairs of
proportional stress and strain paths one can find corresponding void ratios
ep dependent on the mean stress p. Combinations of ep and p for tr~D < 0
plotted in the e : p space can be denoted as normal compression lines. Their
positions in the e : p space may be characterised by the void ratio at vanishing
mean stress (for model [16]), or at vanishing logarithm of the mean stress
normalised by the reference stress (for model [8]), denoted here as ep0. In this
way, extended SOM-states which include void ratio can be defined (Fig. 2).
Critical states can be considered as an example of extended SOM-states for
strain paths with trD = 0, where SOM stress ratio follows from critical friction
angle ϕc.
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Fig. 2. Extended SOM-behaviour including void ratio

4 Limit state (swept-out-memory) conditions

As introduced in the previous section, at extended swept-out-memory states
the stress rate tensor T̊ has the same direction as the stress tensor T and
the pyknotropy factor fd is constant (ḟd = 0) for one particular direction of
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stretching ~D. In the present developemnts, we will search for the value of
the pyknotropy factor fd and direction of stretching ~D which correspond to
swept-out-memory states for the given stress state T. The rate formulation of
the considered hypoplastic equations reads

T̊ = fsL : D + fsfdN‖D‖ (5)

which may be, without loss of generality, simplified by assuming fs being part
of constitutive tensors L and N and taking ‖D‖ = 1 (considered models are
rate independent – positively homogeneous of degree one in D). Therefore

T̊ = L : ~D + fdN (6)

At swept-out-memory conditions T̊ ‖ T, so we may introduce a scalar multi-
plier γ such that

T̊ = γ~T (7)

Therefore, swept-out-memory conditions are described by

γ~T = L : ~D + fdN (8)

with
ḟd = 0 (9)

Note that limit states calculated according to Eqs (8) and (9) include also

proportional strain paths with tr~D > 0 (γ < 0).

4.1 Hypoplastic model for clays

Let us now solve the Eqn. 8 for the hypoplastic constitutive model for clays.
The pyknotropy factor fd of this model is defined as

fd =

(

2p

p∗e

)α

(10)

where p is the mean stress p = −trT/3 and p∗e is the equivalent pressure on
the isotropic normal compression line, which is defined to be linear in the
ln p : ln(1 + e) space and follows [1]

ln(1 + e) = N − λ∗ ln

(

p∗e
pr

)

(11)

with pr being the reference stress of 1 kPa. Comparison of (10) and (11)
reveals that ḟd = 0 is satisfied for any line defined by

ln(1 + e) = const. − λ∗ ln

(

p

pr

)

(12)
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Time-differentiation of (12) yields the rate formulation of normal compression
lines, as defined in Sec. 3

ė

1 + e
= −λ∗

p
ṗ (13)

Because
ė = (1 + e)tr~D (14)

we have

tr~D = −λ∗

p
ṗ = −λ∗

tr(γ~T)

trT
= − λ∗γ

‖T‖ (15)

from which follows the expression for the scalar multiplier γ

γ = −‖T‖ tr~D

λ∗
(16)

We see that in the hypoplastic model for clays γ is independent of void ratio
(independent of the actual value of the pyknotropy factor fd), which signif-
icantly simplifies derivation of the mathematical expression for swept-out-
memory states.

Eqs. (16) and (8) may be combined

− T

λ∗
tr~D = L : ~D + fdN (17)

To solve this equation for ~D and fd, we introduce the fourth order tensor A

A = L +
1

λ∗
T ⊗ 1 (18)

such that

A : ~D = L : ~D +
T

λ∗
tr~D (19)

holds. Eqn. (17) may be therefore written

A : ~D + fdN = 0 (20)

Since ‖~D‖ = 1, we get
fd = ‖A−1 : N‖−1 (21)

and

~D = − A
−1 : N

‖A−1 : N‖
(22)

so we have a direction of stretching ~D and the value of pyknotropy factor fd

at swept-out-memory surface for any stress level T. Graphical representation
of Eqs. (21) and (22) is demonstrated in Sec. 5.
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4.2 Hypoplastic model for granular materials

Solution of Eqns. (8) and (9) is less straightforward for the hypoplastic model
for granular materials. In this case, the pyknotropy factor is defined as

fd =

(

e − ed

ec − ed

)α

(23)

where ec and ed are characteristic void ratios which evolve with the mean
stress according to

ec

ec0
=

ed

ed0
= exp

[

−
(

3p

hs

)n]

(24)

It follows from (23) and (24) that the pyknotropy factor of a hypoplastic
model for granular materials is constant along any line defined by

e = (const.) exp

[

−
(

3p

hs

)n]

(25)

which leads after time differentiation to

ė

e
=

n

hs
trT̊

(

3p

hs

)(n−1)

(26)

By combining Eqs. (26) with (14) and (7) we have

tr~D

(

1 + e

e

)

= γ
n

hs
tr~T

(

3p

hs

)(n−1)

(27)

We see that the value of the scalar multiplier γ of a hypoplastic model for
granular materials depends on the void ratio, so also on the actual value of
the pyknotropy factor fd. To solve the set of Eqs. (27) and (8) for ~D and fd,

we extract ~D from Eq. (8) so we have

~D = γ(L−1 : ~T) − fd(L
−1 : N) (28)

Combination of (28) and (27) yields the first equation relating fd and γ which
reads

γ = −
(

1+e
e

)

trB

G −
(

1+e
e

)

trC
fd (29)

with

B = L
−1 : N (30)

C = L
−1 : ~T (31)

G =
n

hs
tr~T

(

3p

hs

)(n−1)

(32)



State boundary surface in hypoplasticity 7

The second necessary equation is found by taking norm of (28). Because

‖~D‖ = 1 we have

1 = ‖B‖2f2
d + ‖C‖2γ2 − 2(B : C)fdγ (33)

Combination of (29) and (33) yields an implicit equation for fd

fd =

√

√

√

√

√



‖B‖2 +

(

‖C‖
(

1+e
e

)

trB

G −
(

1+e
e

)

trC

)2

+
2(B : C)trB

(

1+e
e

)

G −
(

1+e
e

)

trC





−1

(34)

where (from (23))

e = f
(1/α)
d (ec − ed) + ed (35)

Therefore, for hypoplastic model for granular materials explicit formulation for
~D, fd and γ cannot be found. Eqn. (34) may be, however, solved numerically.
We search for corresponding e and fd, while takning into account that also
fs (and, therefore, also L and N which include fs in present developments)
changes with e. Results are demonstrated graphically in Sec. 5.

5 Graphical representation

Graphical representation of outlined equations for limit states is described in
detail by Maš́ın and Gudehus [10]. State limits of both hypoplastic models

for clays and for granular materials may be expressed by a graph relating ~D
and ~T. For axisymmetric states we define in Rendulic plane angles ψσ and ψε̇

according to Fig. 3. Special directions in the Rendulic plane of strain rate space
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Fig. 3. Definition of angle ψε̇ for axisymmetric states in Rendulic plane of ε [10].
Angle ψσ is defined accordingly in the Rendulic plane of σ.

are denoted by ”i” and ”-i” (for isotropic compression and extension), ”c” and
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”-c” (for isochoric compression and extension) and ”d” and ”-d” (for extension
with εa=0 and εr=0 respectively). ψσ versus ψε̇ plots for both models are
shown in Fig. 4. Parameters used for simulations with a hypoplastic model
for granular materials follow from [5] (Tab. 1), parameters of a hypoplastic
model for clays have been compiled from different publications (see Tab. 2 for
references).

Table 1. Parameters of a hypoplastic model for granular materials [5]

soil ϕc [◦] hs [MPa] n ed0 ec0 ei0 α β

Zbraslav sand 31 5700 0.25 0.52 0.82 0.95 0.13 1.00
Toyoura sand 30 2600 0.27 0.61 0.98 1.10 0.18 1.00

Hochstetten sand 33 1500 0.28 0.55 0.95 1.05 0.25 1.50
Schlabendorf sand 33 1600 0.19 0.44 0.85 1.00 0.25 1.00

Hostun sand 31 1000 0.29 0.61 0.91 1.09 0.13 2.00
Karlsruhe sand 30 5800 0.28 0.53 0.84 1.00 0.13 1.05
Ottawa sand 30 4900 0.29 0.49 0.76 0.88 0.10 1.00
Ticino sand 31 5800 0.31 0.60 0.93 1.05 0.20 1.00
SLB sand 30 8900 0.33 0.49 0.79 0.90 0.14 1.00

Table 2. Parameters of a hypoplastic model for clays

soil reference ϕc [◦] λ∗ κ∗ N r

London clay [8] 22.6 0.11 0.014 1.375 0.4
Beaucaire marl [12] 33 0.057 0.007 0.85 0.4

Pisa clay [9] 21.9 0.14 0.005 1.56 0.2
Bothkennar clay [9] 35 0.119 0.002 1.344 0.05

Second plot used to characterise limit state conditions relates ψσ with
a function of the pyknotropy factor fd at limit states. A suitable quantities
follow from the formulation of pyknotropy factors of the two models considered
(Eq. (10) and (23)). The influence of pyknotropy for the model for granular
materials is characterised by a relative void ratio re defined as

re =
e − ed

ec − ed
(36)

whereas the degree of overconsolidation for the model for clays may be char-
actersised by overconsolidation ratio (OCR), defined as

OCR =
p∗e
p

(37)
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Fig. 4. ψσ:ψε̇ plots for the hypoplastic model for clays (a) and hypoplastic model
for granular materials (b).

Graphs relating ψσ with re for the model for granular materials and ψσ with
OCR for the model for clays are in Fig. 5.
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Fig. 5. ψσ:OCR and ψσ:re plots for the hypoplastic model for clays (a) and hy-
poplastic model for granular materials (b)

6 Concluding remarks

As pointed out in the introduction, limit state conditions are important as-
pects of soil behaviour which must be predicted by advanced constitutive
models. The paper presented mathematical derivation for swept-out-memory
(limit) states of the two hypoplastic constitutive models. It has been shown
that the hypoplastic model for clays allows for an explicit formulation of limit
state conditions. The expression for limit state conditions may be evaluated
also for a hypoplastic model for granular materials. In this case, however, the
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analytical solution of the problem is not available and governing equations
must be solved numerically. An experimental check of the limit state loci pre-
dicted by the models is a matter of further research. Presented derivations
are important for incorporating structural effects into hypoplastic models, as
demonstrated in [9] by formulating a hypoplastic model for structured clays.

7 Acknowledgement

The first author is grateful for the financial support by the research grants
SSPI-CT-2003-501837-NOAH’S ARK under the EC 6th FP and GACR
205/03/1467.

References

1. R. Butterfield. A natural compression law for soils. Géotechnique, 29(4):469–
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Appendix A

The mathematical structure of the hypoplastic model for clays is discussed in detail
in [8]. The constitutive equation in rate form reads:

T̊ = fsL : D + fsfdN‖D‖ (38)

where:

L = 3
“

c1I + c2a
2
T̂ ⊗ T̂

”

N = L :

„

−Y
m

‖m‖

«

T̂ :=
T

trT
(39)

1 is the second–order identity tensor and I is the fourth–order identity tensor, with
components:

(I)ijkl :=
1

2
(1ik1jl + 1il1jk) (40)

In eq. (38), the functions fs(trT) (barotropy factor) and fd(trT, e) (pyknotropy fac-
tor) are given by:

fs = − trT

λ∗

“

3 + a2 − 2αa
√

3
”

−1

fd =

»

− 2trT

3pr
exp

„

ln (1 + e) − N

λ∗

«–α

(41)

where pr is the reference stress 1 kPa. The scalar function Y and second–order tensor
m appearing in Eq. (39) are given, respectively, by:

Y =

„
√

3a

3 + a2
− 1

«

(I1I2 + 9I3)
`

1 − sin2 ϕc

´

8I3 sin2 ϕc
+

√
3a

3 + a2
(42)

in which:

I1 := trT I2 :=
1

2

ˆ

T : T − (I1)
2
˜

I3 := detT

and:

m = − a

F

"

T̂ + T̂
∗ − T̂

3

 

6 T̂ : T̂ − 1

(F/a)2 + T̂ : T̂

!#

(43)

in which:

T̂
∗

= T̂ − 1

3
F =

s

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tan ψ cos 3θ
− 1

2
√

2
tan ψ (44)

tan ψ =
√

3‖T̂∗‖ cos 3θ = −
√

6
tr
“

T̂
∗ · T̂∗ · T̂∗

”

“

T̂
∗

: T̂
∗

”

3/2
(45)
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Finally, the scalars a, α, c1 and c2 appearing in eqs. (39)–(43), are given as functions
of the material parameters ϕc, λ∗, κ∗ and r by the following relations:

a =

√
3 (3 − sin ϕc)

2
√

2 sin ϕc

α =
1

ln 2
ln

»

λ∗ − κ∗

λ∗ + κ∗

„

3 + a2

a
√

3

«–

(46)

c1 =
2
`

3 + a2 − 2αa
√

3
´

9r
c2 = 1 + (1 − c1)

3

a2
(47)

The model requires five constitutive parameters, namely ϕc, λ∗, κ∗, N and r.

Appendix B

This appendix summarizes mathematical formulation of a hypoplastic model for
granular materials [16].

The model assumes the following stress–strain relation:

T̊ = fsL : D + fsfdN‖D‖ (48)

with

L =
1

T̂ : T̂

“

F 2
I + a2

T̂ ⊗ T̂
”

(49)

N =
Fa

T̂ : T̂

“

T̂ + T̂
∗

”

(50)

where 1 is a second–order unity tensor, Iijkl = 1

2
(1ik1jl + 1il1jk) is a fourth-order

unity tensor and

trT = T : 1, T̂ = T/trT, T̂
∗

= T̂ − 1/3 (51)

a =

√
3 (3 − sin ϕc)

2
√

2 sin ϕc

, F =

s

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tan ψ cos 3θ
− 1

2
√

2
tan ψ (52)

with

tan ψ =
√

3‖T̂∗‖, cos 3θ = −
√

6,
tr
“

T̂
∗ · T̂∗ · T̂∗

”

h

T̂
∗

: T̂
∗

i3/2
(53)

The scalar factors fs and fd take into account the influence of mean pressure and
density,

fs =
hs

n

“ei

e

”β 1 + ei

ei

„

−trT

hs

«

1−n »

3 + a2 − a
√

3

„

ei0 − ed0

ec0 − ed0

«α–−1

(54)

fd =

„

e − ed

ec − ed

«α

(55)

The characteristic void ratios – ei, ec and ed decrease with the mean pressure ac-
cording to the relation

ei

ei0
=

ec

ec0
=

ed

ed0

= exp

»

−
„

−trT

hs

«n–

(56)

The model requires 8 parameters: φc, hs, n, ed0, ec0, ei0, α and β.


